Urban health and air quality in Brazil
Latin America

Nelson Gouveia
Department of Preventive Medicine
University of Sao Paulo Medical School
Sao Paulo, Brazil

Presenter Information

Nelson Gouveia
Professor of Global Health at the Department of Preventive Medicine of the University of São Paulo Medical School.
PhD in Public Health and MSc in Epidemiology from the London School of Hygiene and Tropical Medicine of the University of London, UK.

Department of Preventive Medicine
University of Sao Paulo Medical School
Sao Paulo, Brazil
Motivation

- Air pollution is a major public health concern
- Global inequalities in air quality monitoring capacity
- Approximately 60% of countries, comprising 1.3 billion people, lack ground-level PM\(_{2.5}\) monitoring capacity (Martin et al., 2019)
- Scarcity of air quality monitoring especially in LMICs
- **80%** of the population in LAC resides in urban areas
- Only **117 cities** had ground level monitors

Objectives

- Examine current levels of PM\(_{2.5}\) in LAC and how they compare to WHO-AQG
- Quantify population exposed to levels above WHO-AQG
- investigate urban factors as predictors of PM\(_{2.5}\) levels
The SALURBAL Project

1) Population
- 11 countries
- All cities ≥ 100,000 habitants
- “cities” defined administratively, quantitatively from satellite imagery, and based on country-defined metropolitan areas
- three-level tiered system to define cities and their smaller subunits (sub-cities) using census hierarchies

2) Air pollution data (PM$_{2.5}$)
- Estimated from satellite measurements obtained from the Atmospheric Composition Analysis Group of the Washington University in St Louis
- Annual means for 2015
- Gridded format with each grid cell representing 0.01 degrees by 0.01 degrees (~ 1.1km by 1.1km)
Methods

3) Built environmental (urban form / transportation):

- Population density in 2015 (pop/area of urban patches)
- Fragmentation (number urban of patches/total area)
- Gas price (adjusted for minimum wage)
- Transit (BRT + metro + tram/area)
- Intersection density (node density of the set of nodes with more than one street emanating from them)
- Travel delay index
- Greenness (NDVI)
Methods

4) Socio-environmental variables:
 • Country GDP/capita
 • Population in 2015 by age and gender
 • Pop growth (2010-2015)

5) Statistical approach:
 • Linear Mixed Models
 • Random intercept for country (2-level)
 • Random intercept for country and city (3-level)

Results

Boxplots of PM$_{2.5}$ mean concentration in cities in Latin America countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Argentina</th>
<th>Brasil</th>
<th>Central America</th>
<th>Chile</th>
<th>Colombia</th>
<th>Mexico</th>
<th>Peru</th>
</tr>
</thead>
</table>
Results

AIR POLLUTION EXPOSURE

Exposed to unhealthy levels of air pollution:
- 38.5% of cities
- 55% of sub-cities
- 171.1 million people total
- 12.3 million children ages under 5 years of age
- 14.1 million adults over age 65

<table>
<thead>
<tr>
<th>Country</th>
<th>Proportion of urban population exposed to unhealthy levels of air pollution*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>71% (21,227,417 people)</td>
</tr>
<tr>
<td>Brazil</td>
<td>53% (62,236,144 people)</td>
</tr>
<tr>
<td>Central America</td>
<td>10% (1,139,304 people)</td>
</tr>
<tr>
<td>Chile</td>
<td>86% (10,968,452 people)</td>
</tr>
<tr>
<td>Colombia</td>
<td>38% (10,965,939 people)</td>
</tr>
<tr>
<td>Mexico</td>
<td>67% (51,444,741 people)</td>
</tr>
<tr>
<td>Peru</td>
<td>74% (13,160,574 people)</td>
</tr>
</tbody>
</table>

*considering above 10µg/m³

Mean differences in annual mean PM$_{2.5}$ µg/m³ concentrations at the sub-city level associated with a 1 SD higher value of city and sub-city -level characteristics

<table>
<thead>
<tr>
<th>City factors</th>
<th>Univariable Estimate (95% CI)</th>
<th>Full model Estimate (95% CI)</th>
<th>Full model with motorization rate** Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP per capita</td>
<td>1.00 (0.52, 1.47)</td>
<td>0.87 (0.43, 1.32)</td>
<td>0.65 (0.22, 1.09)</td>
</tr>
<tr>
<td>Population</td>
<td>2.57 (1.49, 3.68)</td>
<td>0.01 (-1.54, 1.57)</td>
<td>-0.71 (-2.60, 1.18)</td>
</tr>
<tr>
<td>Population growth %, 2010 to 2015</td>
<td>-0.13 (-0.55, 0.30)</td>
<td>-0.29 (-0.66, 0.09)</td>
<td>-0.06 (-0.45, 0.32)</td>
</tr>
<tr>
<td>Mass transit infrastructure*</td>
<td>1.17 (-0.19, 2.53)</td>
<td>-1.91 (-3.39, -0.42)</td>
<td>-1.87 (-3.40, -0.34)</td>
</tr>
<tr>
<td>Gas cost</td>
<td>-0.17 (-1.68, 1.33)</td>
<td>-0.09 (-1.74, 1.56)</td>
<td>-1.75 (-4.36, 0.86)</td>
</tr>
<tr>
<td>Patch density**</td>
<td>0.47 (-0.31, 1.25)</td>
<td>0.64 (-0.18, 1.46)</td>
<td>0.67 (-0.21, 1.56)</td>
</tr>
<tr>
<td>Population density</td>
<td>-0.71 (-1.41, -0.01)</td>
<td>-0.99 (0.50, -0.20)</td>
<td>-0.84 (-1.87, 0.18)</td>
</tr>
<tr>
<td>Travel delay index</td>
<td>1.05 (0.13, 1.97)</td>
<td>0.26 (-0.70, 1.22)</td>
<td>-0.62 (-2.09, 0.84)</td>
</tr>
<tr>
<td>Motorization rate</td>
<td>1.59 (0.03, 2.18)</td>
<td>0.78 (0.12, 1.43)</td>
<td></td>
</tr>
<tr>
<td>Sub-city factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection density</td>
<td>1.92 (1.70, 2.14)</td>
<td>1.91 (1.65, 2.17)</td>
<td>1.96 (1.67, 2.25)</td>
</tr>
<tr>
<td>Groundness</td>
<td>-1.39 (-1.72, -1.07)</td>
<td>0.13 (-0.23, 0.49)</td>
<td>0.06 (-0.34, 0.46)</td>
</tr>
</tbody>
</table>

*binary presence or absence of MTT
**measure of urban fragmentation that is additionally adjusted for z-standardized % built-up area
***based on subsample with 241 cities

Note: figures in bold are statistically significant (p<0.05)

Gouveia et al. Science of the Total Environment 772 (2021) 145035
(https://doi.org/10.1016/j.scitotenv.2021.145035)
Results

CITY CHARACTERISTICS AND AIR POLLUTION LEVELS

- Larger cities
- Higher per capita GDP
- Higher motorization rate
- Higher traffic congestion
- Higher street intersection density

(higher pollution)

- Higher population density
- More green space
- Presence of mass transit

(lower pollution)

POLICY IMPLICATIONS: WHAT CAN CITIES DO?

Green spaces
- Urban gardens
- Tree lines
- Superblocks

Traffic congestion
- Unique lanes for public transport
- Bike lanes
- Pedestrian paths
- Street improvements

Mass Transit
- Network expansion
- Accessible & affordable public transportation
- Public safety

Better air quality monitoring

Environmental protection policies at national levels
Gracias

Nelson Gouveia
(ngouveia@usp.br)
Department of Preventive Medicine
University of Sao Paulo Medical School
Sao Paulo, Brazil