Integrating NASA Resources into the Standard Operating Procedures of Low-Moderate Income Countries (LMIC)

PI: Bryan N. Duncan (NASA; bryan.n.duncan@nasa.gov)
Co-Is: Ana I. Prados (UMBC), Kevin R. Cromar (NYU)
Project Methodology

Step 1: Engaging a diverse set of stakeholders from the LMIC to gauge their individual needs and to identify common needs.

Step 2: Identify ways to “scale up” engagement to reach many stakeholders in the LMIC.

GeoHealth

Augmenting the Standard Operating Procedures of Health and Air Quality Stakeholders With NASA Resources

First published: 09 September 2021 | https://doi.org/10.1029/2021GH000451

Our methodology presented here
Step 1: Working with Select Stakeholders in LMIC
We are engaging select stakeholders who have a range of:

- expertise (none - intermediate) working with satellite data for AQ and health applications.

- financial resources (minimal - relatively well funded).

- experience with health and AQ issues (limited - many years).

- application needs (e.g., analysis of health impacts, raising awareness of the negative effects of air pollution)
Diverse Stakeholder Needs & Abilities

City Government of Rio de Janeiro

- **Experience with NASA:**
 - (> 5 y) Landslide detection and prediction.
 - (> 2 y) Christoph Keller (GMAO) on NASA AQ forecasts.
 - Little expertise using satellite data for AQ applications.
- **Capacity:** Relatively well funded, large group.
- **Primary interest from this HAQAST project:** Identifying links between health outcomes and specific pollutants (PM$_{2.5}$, O_3, NO$_2$), including for gauging benefits of pollution reductions.
 - Kevin Cromar is building capacity within the Rio group to do this health analysis – monthly meetings.

City Government of Quito

- **Experience with NASA:** (> 2 y) Working with Christoph Keller (GMAO) on NASA AQ forecasts.
- **Capacity:** Very small group with limited funding.
- **Primary interest from this HAQAST project:** Identifying links between health outcomes and specific pollutants (PM$_{2.5}$, O_3, NO$_2$), including for gauging benefits of pollution reductions. Potential of satellite data for their applications.
 - Kevin Cromar delivered his team’s health analysis to them.
 - Ana Prados delivered a mini-training on using satellite data for health and AQ applications.
Health Analyses: Quito and Rio

Upper management of the health and AQ agencies of both cities requested that we first show how air pollution affects health outcomes, using in situ monitor data.

NO_2 is the strongest indicator of respiratory morbidity in both Latin American cities.

Studies increase equity of global epidemiological literature.

Directly benefits study populations by providing detailed risk information to local environmental managers.

Provide baseline information to inform future studies involving satellite-model data applications for broader collaborative project.

Takeaways from Health Analyses

NO_2 associations persisted in two-pollutant models.
Focus of Efforts for the Quito and Rio

We are focusing on:

• siting new monitors.
• assessing their current air quality indices and comparing to NYU’s health air quality index (HAQI).
• urban pollution monitoring.

Also received supplemental funding from NASA to work with Rio.
Diverse Stakeholder Needs & Abilities

African Centre for Clean Air (multinational & non-governmental who influence government)
• Experience with NASA:
 • Varied, but generally very limited.
• Capacity: Varied, but generally very limited.
• Primary interest from this HAQAST project: Two ACCA leads have articulated numerous interests (e.g., LCS, health impacts, AQ monitoring, siting industry), but focusing efforts now on raising awareness of NASA resources.
 • Ana Prados delivered a mini-training on using satellite data for health and AQ applications to two ACCA leads.
 • Next Step: Planning future mini-training to any interested ACCA members.
 • Health analysis request very likely.

Bolivia (planning with university and non-profit partners to reach government)
• Experience with NASA: Academic and non-profit partners have ample experience with satellite remote sensing.
• Capacity: Varied for university contacts, but very limited in government.
• Primary interest from this HAQAST project: Focus on stakeholders in Santa Cruz who are interested in using satellite NO₂ and aerosol datasets to monitor urban air pollution and smoke transport.
 • Ana Prados developed three 1-hour webinars, co-delivered and co-designed with collaborators and tailored to regional needs. There were several hundred attendees from academic, government, and private sector organizations. Topics: overview of air quality applications of remote sensing, and access to aerosol datasets. Post-webinar surveys showed a strong interest in combining satellite observations with existing ground-based networks (low-cost sensors, etc.)
Focus of Efforts for the ACCA & Bolivia

We are focusing on:

• raising awareness.
• using satellite data and model output to characterize the transboundary transport of pollution from agricultural fires and some wildfires.
• urban pollution.
Step 2: Scaling up Engagement to all Stakeholders in LMIC
Merging lessons learned from High-Income stakeholders with those from our work in the LMIC (i.e., Step 1), we are working to:

- develop methodologies to broaden the use of NASA resources by AQ and health stakeholders, especially for stakeholders with limited financial resources (e.g., in LMIC, but also in HIC).

- make recommendations to the NASA Applied Sciences Program on what NASA can further do to broaden data use in the LMIC as well as many resource-starved stakeholders in high-income countries.
To enable broader usage of processed (L3/4) data products, we recommend that data product developers work in consultation with health and AQ stakeholders to address the following:

- Validation
- Assessment of Uncertainties and Errors
- Documentation
- Ease-of-Access
- Data Product Recommendations
- Mechanism for Stakeholder Feedback

TT Goal: Begin first steps to making a prototype of a “guidance directory” for health and AQ stakeholders.

Guidance Directory: Health and AQ stakeholders often request a “guidance directory” of the data, tools, documentation, and other resources that are best suited to their AQ management challenges. This guidance directory would include all of the elements above in a “one-stop shop” environment, focusing on the L3/4 products known to be most useful to decision-making agencies.

Hosted by NASA’s Goddard Earth Sciences (GES) Data and Information Services Center (DISC) (https://disc.gsfc.nasa.gov/)
Broadening the Use of NASA Resources: Capacity Building + **Processed Data Products**

Processed Data Products (L3-L4):
- Surface PM$_{2.5}$, NO$_2$ Concentrations
- Health Air Quality Index
- Lights at Night
- AQ Forecasts/Bias-Corrected Forecasts
- Etc.

Potential Users
- Novice (L3/L4)
 - e.g., Human Health, Private Industry, AQ Managers
- Intermediate (L2-L4)
 - e.g., Big Data, Some Resource Managers, Modeling Communities
- LMIC AQ & Health Stakeholders
Please feel free to contact me:

bryan.n.duncan@nasa.gov