Identifying Acute Myocardial Infarctions from Coded Data in the EHR

Background
- The Heart of New Ulm Project, which launched in 2009, is a 10-year community-based demonstration project aimed at reducing myocardial infarctions (MI) and modifiable heart disease risk factors in the rural community of New Ulm, MN.
- Healthcare in the community is provided primarily by one healthcare system (Allina Health) that operates as New Ulm Medical Center, the only clinic and hospital located in the community.
- Recent examination of residents with visits in the NUMC system indicates 90% of the target population is served by Allina Health system but were left in for the analysis with the understanding that these will require chart review for validation.
- The primary outcome (MI) will be measured using state billing data. However, due to lag time to get state data, the HONU project needed a way to assess trends in MI internally and to conduct a deeper analysis of how MI might be changing in the population (e.g., within gender, age groups, changes in severity of MI, recurrent and incident). Current methods to achieve this require MDs to review charts for all patients with a coded ICD9 of 410.

Methods
- Initial set of patients identified for chart review based on ICD-9 primary or secondary coded data of 410.xx from 2006 through 2012 – 410.xx codes were excluded.
- Total N = 386 encounters
- Chart Review took about 64 MD hours to complete

Results
- Initial attempt to use Hospital Problem List data yielded a possible 8956 encounters and was thus discounted as a valid method for identification of Acute or Incident MI.
- Identification of initial set of patients for chart review.
 - Coded primary or secondary ICD-9 codes 410.xx from 2006 through 2012 – 410.xx codes were excluded.
 - Total N = 386 encounters
 - Chart Review took about 64 MD hours to complete
- Chart Review yielded
 - 13 encounters were duplicates and removed from the dataset as these can be avoidable via future queries
 - 1 encounter was identified as Possible MI
- 27 encounters had treatment outside of the Allina Health system but were left in for the analysis with the understanding that these will require chart review for validation.
- Final n for analysis using the EHR’s database = 373 encounters
- 167 encounters were identified as NOT Acute MI
- 206 encounters identified as Acute MI

Limitations
- Patients treated outside of Allina Health’s network will likely always need to be chart reviewed until a universal health record or reportable Natural Language Processing (NLP) is implemented.
- Patients may refuse treatment or may not be medically eligible for procedures such as a stent or CABG, thus will not have billing data which are criteria for algorithms.
- Patients may expire during the encounter which also may result in no billing data for procedures, order sets, medications, etc.

Discussion
Determining Acute MI is a complicated question in cardiology. Often, a trained eye is needed to review non-extractable information. The prevalence of 2 of the 3 indicators of MI. For a majority of patients who survive an MI event, subsequent billing, workflow, and procedure documentation is promising for inclusion into a population for Acute MI.

The initial goal of determining Acute MI resulted in 3 potentially useful algorithms (#3, #7, #9), each of which would reduce the number of chart reviews required for determination of Acute MI to about 24% of the original n. However, this methodology is conceptual and could not be applied at this point to reduce review criteria since no criteria yielded 100% specificity and sensitivity.

Only a measure with a 100% positive predictive value (PPV) would eliminate the need to review cases if the goal was a precise measure of all true MI events. Of the measures reviewed, only 1 (#6) had a 100% PPV. In this case, we could eliminate only 17 cases from chart review; this equates to approximately 170 minutes of cardiologist time potentially saved and so is not without value. Furthermore, while several measures had high specificity or sensitivity, no algorithm had sufficiently high sensitivity and specificity to be used as a method to stand out as an appropriate methodology to estimate MI trends without conducting reviews.

<table>
<thead>
<tr>
<th>MI Selection Algorithms</th>
<th>Validated MI</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviewed MI Cases (%)</td>
<td>206 (55.2) 128 (34.3) 351 (94.1) 155 (41.6) 93 (24.9) 96 (25.7) 17 (4.4) 125 (33.5) 69 (18.5) 184 (49.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sensitivity, %</td>
<td>ref</td>
<td>50.0 99.5 65.5 40.8 42.2 8.3 58.3 24.3 73.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>specificity, %</td>
<td>ref</td>
<td>85.0 12.6 88.0 94.6 94.6 100.0 97.0 88.6 79.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive predictive value, %</td>
<td>ref</td>
<td>80.5 58.4 87.1 90.3 90.6 100.0 96.0 72.5 81.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>true positives, n</td>
<td>206</td>
<td>103</td>
<td>205</td>
<td>135</td>
<td>84</td>
<td>87</td>
<td>17</td>
<td>120</td>
<td>50</td>
<td>151</td>
</tr>
<tr>
<td>true negatives, n</td>
<td>167</td>
<td>142</td>
<td>21</td>
<td>147</td>
<td>158</td>
<td>158</td>
<td>167</td>
<td>162</td>
<td>148</td>
<td>132</td>
</tr>
<tr>
<td>Hypothetical cases to validate, (#/%)</td>
<td>128 (34.3) 147 (39.4) 91 (24.4) 131 (35.1) 128 (34.3) 189 (50.7) 91 (24.4) 175 (46.9) 90 (24.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>