

Magic Potions with Liquid

Simulation

V1.1 - July 2017

© 2Ginge 2017

Index
Index 2

Magic Potions - Overview 3

How to use Magic Potions - first time users 4
Importing pre made bottles 4

Script Overview 6
BottleSmash.cs 6
PourLiquid.cs 7
LiquidVolumeAnimator.cs 7
LiquidColor.cs 8
PS_Color.cs / ParticleColor.cs 9
LiquidAbsorbtion.cs: 9

Shader Overview 9
Liquid_Potion_Texture 9
Liquid_Potion 10
Glass_Potion 10

Additional Help/ Contact 11

Magic Potions - Overview
This asset pack has been developed to allow you to easily integrate potions with liquid
simulation, shattering, pouring and animated surface textures into your next Unity game project.
Taking the prefabs we have developed you will be able to quickly drag and drop these potions
into your project as environmental props, or interactable items for players to collect.

Secondly, this pack is designed to allow you to easily create your own potions making use of the
shaders and scripts we have developed.

Included in v0.1 of this pack is:

● A tall ‘oval’ potion bottle with liquid mesh simulation, shattering, pouring, a cork and a
label

● A ‘heart’ shaped potion bottle with liquid mesh simulation, shattering, pouring, a cork and
a label

● An octagonal bottle with liquid mesh liquid simulation, shattering, pouring, a cork and a
label

● A spherical bottle with liquid mesh simulation, shattering, pouring, a cork and a label
● A short rectangle bottle with mesh liquid simulation, shattering, pouring, a cork and a

label
● A wide cylinder bottle with mesh liquid simulation, shattering, pouring, a cork and a label
● An ink bottle with mesh liquid simulation, shattering, pouring, a cork and a label
● Easy to use liquid shader - allows users to define liquid fill level and draws a ‘fill face’

where the liquid mesh is culled - possesses a texture and animated texture channel to
add detail to liquid surfaces as well as emission, smoothness and metallic sliders and
colour pickers

● A glass shader with metallic, gloss, texture and normal channels to allow for unique
bottle designs

● A ‘liquid volume animator’ script which allows users to simulate approximate liquid
physics and define the behavior of the liquid within the predefined parameters

● A bottle smash script that allows users to manage a bottle smash event, determining
which particle effects play at the time of breakage and how the liquid puddle renders on
the ground plane below the smash location

● A liquid color script that allows the users to have their bottles automatically inherit liquid
color blending when liquids are poured into one another, or inherit an overall liquid color
set by the user (updates particles, liquid and liquid surface to match one another)

How to use Magic Potions - first time users

Importing pre made bottles
First time users can expect to find prefab bottles within the 2Ginge folder following import from
the Unity Asset Store. These bottles are already set up to break when the change in velocity of
the bottle object is greater than the predefined break velocity and simulate stylised liquid
physics when in an unbroken state. Simply drag these prefabs into your scene and you’re ready
to go!

If you are creating your own bottles you will require five components to mimic the effects and
functionality of our pre made assets. You will require a bottle mesh, a liquid mesh, a cork mesh
a label mesh and finally a series shattered glass objects. You can create these shattered
segments manually, or perhaps look at implementing a mesh fracturing tool to do this for you.

Once you have the objects described above you should
import them into your project and set them up in the scene
using the hierarchy shown to the left. Ensure the smashed
particles are turned off by default as the bottle smash script
will enable these when the break conditions are met. Use the
‘glass_potion’ shader for the bottle mesh and the

‘Liquid_Potion’ shader for the liquid. Both of these can be found in the shader drop down under
2Ginge > Potion.

Most of you will be aware, but it bears mentioning that it is best practice to center your parent
objects in world space while organising the initial hierarchy to ensure all objects are aligned
correctly with one another.

 At this point ensure that the necessary objects have rigidbodies and colliders set up. The bottle
parent object should have a rigidbody attached, the bottle object should have a mesh collider
and the smashed bottle parts and cork should have their own rigidbodies and mesh colliders in
order to resolve their own physics after they are turned on. The liquid object and label do not
require any colliders or rigidbodies as they will despawn on the smash event.

If you are generating your own smash particle effects, also include them in the setup described
above underneath the bottle parent object, positioned correctly. The particle system will be
activated by the bottle smash script and should remain turned on by default.

Once you have set up your objects in a hierarchy similar to that outlined above you are ready to
attach the provided scripts and shaders to ensure correct functionality. The ‘BottleSmash.cs’
script should be attached to the bottle parent object and the ‘LiquidVolumeAnimator.cs’ script
should be attached to the liquid object within your bottle.

Script Overview
Described below are the functions of the scripts within the asset pack. If you are unclear on the
functionality of these scripts and their many components please do not hesitate to contact us for
assistance. You can find our support contact details at the bottom of this document.

BottleSmash.cs
‘Cork’, ‘Liquid’, ‘Glass’ and ‘Label’ are all gameobjects to be destroyed. Cork is unique in that it
will despawn after the despawn timer has completed, so be sure to have a disabled mesh
collider with a rigidbody (with kinematic ticked) on it to take full effect.

Glass_Shattered​ is a disabled container full of the glass shards (each with their own rigidbody
and mesh collider).

Despawn Time​ is how long parts of the mesh will stay around for (including the shattered
glass).

Effect ​is the particle effect at the center of the
bottle (splash effect essentially).
Splat is the mesh that gets instantiated on the
ground.

Mask​ is the layer that the 'ground' exists on.

Splat Distance​ means that any ground that is
greater distance than this, the splat will not occur
.
Shatter At Speed​ is the speed at which the potion
needs to be travelling in (subtracting its previous
velocity) in order to 'break', think stopping very
quickly or starting very quickly.

Allow Shattering​ will disable any normal shattering logic (however it can still be shattered
through code.

Only AllowShatter On Collision​ means that there is a small window after colliding with another
collider that the potion can shatter (0.2 seconds).

PourLiquid.cs

Rate of flow: ​Multiplier of particles
per second. (Particle emission base
rate set in the ‘Emission’ tab of the
‘PouringParticles’ particle system.)

Smash Script: ​A reference to the
BottleSmash.cs script attached to the
parent bottle object.

Liquid ​A reference to the LiquidVolumeAnimator.cs script attached to the liquid object of the
bottle being set up.

Controlling Transform ​A reference to the parent object transform.

Pouring Particle System ​Reference to the particles that the bottle can emit. (The particle
system that is used to make the bottle look as if it is pouring out its contents).

Volume of Particles ​How many particles the bottle ‘consists’ of, or the total ‘amount’ of particles
that can be emitted relative to the liquid mass.

LiquidVolumeAnimator.cs
Level​ is the slider which fills/empties
the mesh (0, being empty, 1 being
full).

Min Max Bounds​ used to debug if the
volume is approximated correctly.

Debug Anchor​ allows you to see the
physicality of the liquid as a pendulum
object.

Debug Size ​allows the user to scale the debug handle objects while editing.

Anchor Length​ will increase and decrease the effect of rotation and movement on the liquid
volume. Closer to ‘0’ the bottle ‘physics’ will be more erratic and appear like a thinner liquid. A
longer pendulum will cause the liquid to appear thicker and behave in a more static manner.

Dampening ​allows the user to set the liquid volume movement “speed” during simulation
numerically. This will net you similar effects to the anchor length scaling.

Texture Size ​sets the overall texture scale on the liquid volume.

Tex Curve Size ​is an editable graph that users can manipulate
(add keys, move keys, edit curves) to ensure that the texture
visualises correctly across the entire surface fill level (0,1). For
example a linear curve will not suit a spherical bottle liquid as the
surface size starts small when empty, increases towards the
middle and then becomes smaller again as the bottle nears full.
Some default curves are available, as is the ability to save your
own curves once you have made edits.

LiquidColor.cs

BottleSmash ​is a reference to the
parent object to centralize the color of
the liquid

Update Surface Color
Turns the surface color update feature
on or off. When on, it inherits the color
values from the liquid or liquids that

are poured into the bottle, unless the bottle already has a liquid volume level, in which case it
blends between the added liquid and the current liquid.

Update Color
Turns the liquid color update on or off.

Update Surface Emission
Turns the surface emission value update on or off.

Update Emission
Turns the liquid emission value update on or off.

PS_Color.cs / ParticleColor.cs

Bottle Smash​ is a reference to the Bottle Smash Script to tie the particle system color to the
unified bottle color.

LiquidAbsorbtion.cs:

Current Color ​shows the current color of the unified bottle.

Particle Value​ is the amount that each particle that collides with the ‘absorber’ collider transfers
to the level of the bottle (and the color based on the ratio of what's in the bottle).

LVA​ is reference to the LiquidVolumeAnimator.cs script.

Shader Overview

Liquid_Potion_Texture
Color ​sets the liquid body color

Surface Color ​sets the liquid surface
color

Albedo (RGB) ​is a texture space for
the liquid body

SurfaceTex (RGB)​ is the surface
texture space

Animation x,y ​indicates how many
‘cells’ there are in the sprite sheet
provided. For example ‘3,3’ will tell the
system there are 9 cells to move
through during the animation.

Animation z,w ​sets the UV space
scrolling

Smoothness / Metallic ​allows the user to set the smoothness and metallic values for the liquid
object

Emission Color/ Surface Emission Color ​lets the user set the emission color for the body and
surface of the liquid respectively.

Emission Intensity ​increases the emission value past 1

Animation Speed ​sets the speed at which the shader cycles through the animation. This time
value is not synced with the engine's overall time value.

Surface Alpha Scalar ​affords the user the ability to fade out the sprite/ texture on the surface of
the liquid.

Liquid_Potion
Liquid_Potion.Shader is simply a liquid shader minus the surface texture components. Useful for
objects that do not require a textured surface.

Glass_Potion
Glass_Potion is simply a shader that will allow you to set up stylised glass, control opacity,
emission and textures for any glass object.

Additional Help/ Contact
If you are having any issues in setting up your own bottles with the provided scripts and
shaders, please watch the video demonstration which can be found on our ​Youtube channel​.
There you will also be able to find a video detailing the modelling practices put into place when
creating the meshes required to create your own bottle assets.

Feel free to contact us with any issues you may be having via any channel. We are always
happy to support our customers and will address bug fixes as soon as possible. Please do not
hesitate to contact us with feature requests either! We’d love to continue to make our tools and
assets better wherever possible.

Email: ​contact@2ginge.com
Website: ​www.2ginge.com
Twitter: ​@TwoGinge​ ​|​ ​@PezzSp​ ​|​ ​@JairMcBain

If you’d like to hear about our other projects and tools, please find our newsletter signup form at
www.2ginge.com​ or check out our Unity Asset Store developer ​profile​.

https://twitter.com/PezzleSp
https://twitter.com/TwoGinge
http://www.2ginge.com/
https://twitter.com/JairMcBain
mailto:contact@2ginge.com
https://www.youtube.com/channel/UC2T7YzK-hq2gvIWJlIKfwug/videos?sort=dd&shelf_id=0&view=0
http://www.2ginge.com/
https://www.assetstore.unity3d.com/en/#!/search/page=1/sortby=popularity/query=publisher:25296

