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Abstract

Do political connections affect firm and industry dynamics? We study the Italian

firms and their workers to answer this question. Our analysis uses a brand-new

data spanning the period from 1993 to 2014 where we merge: (i) firm-level bal-

ance sheet data, (ii) universe of social security data on workers, (iii) patent

data from the European Patent Office, (iv) registry of local politicians, and (v)

detailed data on local elections in Italy. We find that firm-level political connec-

tions are widespread, especially among large firms, and that the industries with

more politically connected firms feature worse firm dynamics. Market leaders

are much more likely to hire a politician and less likely to innovate, compared to

their competitors. In addition, connections relate to higher survival and growth

in employment and sales but not in productivity. We build a firm dynamics

model where we allow firms to invest in innovation and/or political connections

to advance their productivity and to overcome regulatory or bureaucratic bur-

den. The model highlights the new interaction between static gains and dynamic

losses from rent-seeking for aggregate productivity.
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1 Introduction

In 2011, a nationwide Italian newspaper published an interview with Mr. Fausto Crippa,

an entrepreneur in the construction business (Aulada s.r.l.): “Mayor Sala is a close friend.

I have to say that he contacted me a long way before his election, telling me that he would

definitely be elected and offered me to buy his agricultural land in Cassano, known as La

Taranta, for which I would have had to pay as if it was a building area already. Moreover,

he said he had to get rid of the land before becoming mayor. He also told me that he would

take care of granting permission to build on that area,” (La Repubblica, May 26, 2011, p. 7).

A growing literature argues that factor reallocation from less productive to more pro-

ductive firms is an important source of productivity growth (e.g., Bartelsman and Doms,

2000; Foster, Haltiwanger and Krizan, 2001, 2006). Similarly, innovation-based endogenous

growth models (e.g., Aghion and Howitt, 1992; Grossman and Helpman, 1991) assert that

the process of creative destruction, whereby unproductive incumbents are replaced by in-

novative new entrants, is the key ingredient for economic growth. These models assume

that it is sufficient for an entrepreneur to innovate the most superior product or production

technology to seamlessly replace an incumbent firm and to become the new market leader.

However many examples, such as the one in the opening paragraph, illustrate that there

might be more to it than that. That story of the Italian entrepreneur is a showcase of how

political connections could help firms dominate a market, even if they do not necessarily

introduce a more superior product or process. An important question is, how widespread

are such political connections and how do they affect firm dynamics, market competition,

innovation, and the overall productivity process in the economy? This project is aimed at

answering these questions both theoretically and empirically.

Our analysis begins with a theoretical investigation. To build intuition, we build an

illustrative model where firms face bureaucratic/regulatory burden that may be alleviated

by connecting with politicians. Connections are costly. Static problem implies a threshold

rule of productivity (size) above which firms find it profitable to incur cost of connections and

get rid of regulations – hence, in line with the evidence, larger firms (and market leaders) are

more politically connected. As in the data, we also obtain that firms that get connected enjoy

(temporarily) larger employment and sales growth but lower labor productivity growth.

Dynamic problem implies that industries that have politically connected incumbents face

lower entry by new firms. Intuitively, new firms now need to compete with incumbents not

just in terms of productivity but they also need to overcome the regulatory or bureaucratic

burden that the connected incumbent is already immune to. Crucially, incumbents anticipate
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this dynamic effect and turn to political connections to preempt competition.

The model highlights the important contrasting facets of firm-level connections for aggre-

gate economy. Statically, connections may be beneficial to overcome certain market frictions,

however connections may also entail dynamic losses by distorting competition and firm dy-

namics. This interplay is at the heart of both our theoretical and empirical construct.

Next, we turn to the empirical investigation which is the main bulk of this paper. The

core of our empirical analysis focuses on Italy from 1993 to 2014. There are three main

reasons for this. First, as hinted by our opening story, there is ample anecdotal evidence

for the link between political power and corporate sector in Italy. Perhaps, the largest

manifestation of this presumption has been the historical episode of Mani Pulite (“Clean

Hands”), the biggest corruption scandal that uncovered a dense network of corruption and

bribery throughout Italy in the early 90s.

Second, to rigorously study all the channels through which political connections affect

firm dynamics, we need a very detailed large-scale micro data on firms and their connections.

We construct a brand-new data spanning the whole period from the 90s to 2014 where we

merge: (i) firm-level balance sheet data, (ii) universe of social security data on workers,

(iii) patent data from the European Patent Office, (iv) registry of local politicians, and (v)

detailed data on local elections in Italy. This unique five-way match allows us to examine at

the micro level how firms change their competition strategy as they gain market power. In

particular, we are able to observe amount of innovation and number of politicians hired by

the firms – our measure of firm-level political connections. In addition, we study how factor

reallocation among incumbents and new entry are affected by political connections of the

incumbents.

Third, Italian economy has been performing poorly, in terms of productivity growth since

the 90s (see, for instance, Bugamelli and Lotti, 2017). While many reasons could be at play

for low and stalling aggregate productivity, we try to shed some light on aggregate impli-

cations of firm-level political connections through their effect on firm dynamics, innovation

incentives and competition.

Market competition comes with a tension between market leaders and their potential com-

petitors (Krusell and Rios-Rull, 1996). While the followers try to surpass the market leader

by innovating better products or technologies that would shift customers to themselves, the

market leader would try hard to maintain its leadership and could follow protective defensive

strategies. These protective strategies could include political connections which could give

an extra advantage to maintain leadership or overcome certain barriers. This fact is indeed
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born out very visibly in our data. Figure 1, which we describe in more detail in Section 4.3,

plots the politician intensity, defined as the number of politicians per worker within the firm,

and innovation intensity (patent count per worker) against the market position of the firms.

Interestingly, it shows that as firms become market leaders (lower market rank), their polit-

ical connectedness increases, whereas innovation intensity decreases. This finding suggests

that firms are following different competition strategies as a function of their position in the

market.

Figure 1: Market Leadership, Innovation and Political Connection
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Our empirical analysis uncovers the following important facts:

1. Firm-level connections are widespread. Politically connected firms hold 32% of em-

ployment in the Italian economy. Similarly, among large firms with more than 100

workers, 44% of the firms are politically connected.

2. Industries with more politically connected firms feature worse firm dynamics. In par-

ticular, industries with more politically connected incumbents have lower entry rate,

lower share of young firms, lower firm growth, and productivity on average.
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3. Politically connected incumbents are replaced by politically connected entrants.

4. Market leaders have higher political connection and lower innovation intensity.

5. Politically connected firms have higher employment and revenue growth but not the

productivity growth. Despite having lower productivity, politically connected firms

have lower exit rate.

We exploit a quasi-random discontinuity caused by local elections decided on a thin

margin to gauge about causality in our firm-level results (Lee, 2008). We collect new data

on all local elections in Italy and, based on votes allocation, identify elections that have been

decided on a thin margin. Our regression discontinuity (RD) design then compares firms

that have been connected right before a marginally contested election with a politician from

marginally losing versus marginally winning parties. Since the results of closely contested

elections can be considered as a pure chance (breaking news, weather shock), discontinuity in

outcomes between marginally winning and losing firms after the election can be attributed

to a causal effect of majority-level connections on firms’ outcomes. Our RD results confirm

that direction of causality does also go, at least partly, from firm-level political connections

to firm-level outcomes, such as growth in size versus productivity.

Related literature. Politicians and entrepreneurs have often found themselves along the

road to the pursuit of power. Borrowing the definition by Faccio and Parsley (2006), po-

litical connection is typically a situation in which a top officer, a relevant shareholder or

someone with an important position in the enterprise was (or is) either a holder of a high

political office or a prominent politician. Recent evidence shows that political connection

is a widespread phenomenon and a positive relationship between political connections and

firm value has largely been documented (Fisman, 2001). Moreover, politically connected

firms have been observed both in developed and developing countries, like the US, the UK,

France, Italy, Turkey, China, Malaysia, Indonesia, Korea, Thailand and Singapore (Johnson

and Mitton (2003), Khwaja and Mian (2005), Leuz and Oberholzer-Gee (2006), Fan et al.

(2007), Cingano and Pinotti (2013), Schoenherr (2015)).

The reasons that lead a private company to establish a connection with politics are cer-

tainly linked to profit maximization and surely the expected benefits exceed the costs of

establishing political connections, but the channels through which this is realized are man-

ifold. The range of benefits provided by governments to favored firms include preferential

access to credit (Joh and Chiu (2004), Cull and Xu (2005), Johnson and Mitton (2003),
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Khwaja and Mian (2005)); preferential treatment by government-owned enterprises (Back-

man (2001), Dinc (2005)) and for procurement (Goldman et al., 2013); relaxed regulatory

oversight of the company in question or stiffer regulatory oversight of its rivals (Kroszner

and Stratmann, 1998); lighter taxation (De Soto (1989), Arayavechkit et al. (2017)); and

government bailouts of financially distressed firms (Faccio and Parsley, 2006). While politi-

cal connections are clearly valued positively in the stock market (Faccio and Parsley (2006),

Acemoglu et al. (2017)), they become more valuable where there is a high level of regula-

tion, high level of corruption, and high population concentration in the capital city. Political

connections have been also shown to be more valuable in small firms and in firms that rely

more on external finance (Do and Levchenko, 2006).

There are different views on social costs from corruption and rent-seeking. On the one

hand, if the connections are aimed at reducing the burden of bureaucracy and administrative

regulation, it does not necessarily imply a negative effect on welfare. This mechanism, known

also as greasing wheels hypothesis (Kaufmann and Wei, 1999) is expected to have a positive

effect on welfare, since it increases efficiency through a relief of the burden of regulation

(Shleifer and Vishny, 1994). On the contrary, if a connected firm exerts a rent seeking

behavior, for example by diverting public demand (Goldman et al., 2013), the entailed social

cost may be high. This second effect, named grabbing hand hypothesis (Shleifer and Vishny,

2002) is consistent with the results provided by Cingano and Pinotti (2013) on political

connections in Italy. Focusing on a small sample of Italian manufacturing firms surveyed by

the Bank of Italy, representative of those with at least 50 employees, matched with data on

politicians appointed at the local level, they find that firms’ productivity dynamics cannot

account for the increase in market power associated with political connections, and that the

gains in market power come from public demand shift towards politically connected firms.

On the empirical side, we contribute by analyzing a newly constructed large-scale data

based on multiple administrative datasets from Italy. This allows us to provide a detailed

analysis of the effect of connections on firm outcomes (including a causal RD design), as

well as of the effect on aggregate firm and industry dynamics in the whole economy. We

also bring new evidence on firms’ innovation, survival, and industry entry and competition,

something that has received less attention in the literature so far.

Though empirical literature on private returns to rent-seeking is ample, surprisingly little

has been done to theoretically (and quantitatively) understand the social costs of rent-seeking

through its impact on firm dynamics, innovation and aggregate productivity growth, the

focus of this paper. In his seminal article, Baumol (1990) maintained that large growth dif-
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ferences between or within countries should, to a great extent, be driven by differences in the

allocation of entrepreneurial talent between productive growth-enhancing entrepreneurship,

or unproductive or destructive entrepreneurship, such as rent seeking or crime. Countries’

institutions, policies and social reward schemes then imply the allocation of entrepreneurial

talent between those activities. Relatedly, a widely cited works by Murphy et al. (1991) and

Shleifer and Vishny (2002) focus on the problem of occupation choice between more pro-

ductive sectors (entrepeneurs, engineers) and less productive sectors that are based more on

rent-seeking and intermediation (law, financial services). In the societies that reward rent-

seeking activities more, growth is lower. While those papers focus on the allocation of talent

and discuss potential consequences for growth, contemporaneous papers by Arayavechkit

et al. (2017) and Garcia-Santana et al. (2016) point out static capital misallocation across

different firms resulting from the preferential treatment by the government.

Our theory takes another approach in understanding potential benefits and social costs

from political connections. Our focus is on the effect on firm dynamics and innovation:

though political connections may be beneficial when they reduce market frictions, dynam-

ically the model implies lower entry and reallocation, resulting in the markets that are

dominated by older and larger firms with low innovation and productivity growth.

2 An Illustrative Model

In this section, we build a simple model of firm’s innovation and political connection. The

model illustrates that even if political connections may be beneficial to reduce certain types

of market frictions for the firms, they may induce important social costs through lower

reallocation and growth.

Political connections might affect firms through various channels. As it was exemplified

in the opening paragraph, political connections might help firms overcome regulatory or

bureaucratic burden. In order to understand if this is the case, we examine the patterns of

political connection in more heavily versus less heavily regulated industries. For that purpose,

we follow Pellegrino and Zingales (2014) and develop our own industry-level bureaucracy

index that measures the level of regulatory or bureaucratic burden based on newspaper

articles from Factiva – an online search engine that searches newspaper articles.

We look at newspaper articles from four large news providers (Bloomberg, Dow Jones

Adviser, Financial Times, The Wall Street Journal), and count number of articles that

contain set of words that proxy for government intervention or bureaucracy level that sectors
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are facing. Using international newspapers alleviates concerns of endogeneity and reverse

causality if we were just to look at Italian news. We focus on 58 broad sectors that roughly

correspond to 2-digit nace rev 2 industry classification. We focus on articles starting from

1991 and experiment with two lists of words, List 1 and List 21.

Our measures of a sector’s regulation/bureaucracy, that we refer to as simply Bureaucracy

index 1(2), is then a share of newspaper articles in a sector that have some words from the

List 1 (List 2). The two bureaucracy indices are highly positively correlated with correlation

of 0.56. Figure 2 confirms that there is a strong and positive relationship between industry’s

Bureaucracy index 1 and 2 and share of firms that are politically connected. Appendix

Figure 14 shows similar relationship for high-rank politicical connections.

Figure 2: Bureaucracy and Connections across Industries
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(b) Bureaucracy, index 2, and connections
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Notes: Binscatter plots (split into 20 quantiles) and linear fits between bureaucracy indices and share of

connected firms across 52 industries. Sector-level bureaucracy index 1(2) is defined as share of newspaper

articles about a sector from Factiva News search that have government regulation or bureacracy-related

words as listed in the List 1(2) in the main text. Panel (a) uses index 1, while panel (b) uses index 2. Y axis

is share of connected firms across industries.

Motivated by this observation, we build a model where political connections help to

overcome particular market frictions – bureaucracy and regulations. That these frictions

are pervasive and represent a common obstacle for businesses is also reflected in the Doing

Business Indicators by the World Bank: Italy ranks among the lasts in business regulations

1List 1 includes the following words: regulation*, regulated, regulator, bureaucracy, bureaucratic, dereg-
ulation, deregulated, paperwork*, red tape, license and licenses. List 2 includes the same words as List 1,
plus authority, authorities, liberaliz*, reform*, Agency, Agencies, Commission, Commissions, policy maker*,
policymaker*, government, official form*, official procedure*. The * is a jolly character.
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across developed countries2,3. Having said that, we believe that other channels, like bank

lending or procurement contract allocation, should also be empirically relevant. However,

the purpose of this illustrative model is not to quantify some particular channels but rather

to illustrate a tradeoff between static benefits and dynamic losses from lower reallocation,

innovation and growth – the tradeoff that would emerge with many other channels as well.

2.1 Static Environment

The economy features continuum of producers who produce an identical good with different

productivities according to the following production function

yi = qαi l
1−α
i

where we index each producer by i. In this production function, yi, qi and li denote output,

productivity and production workers, respectively. Workers are hired at the same labor

market clearing wage w. However, firms face regulatory or bureaucratic burden which we

capture as a wedge τ per each worker. Hence, the profit maximization of each firm can be

stated as

πn = max
li

{
qαi l

1−α
i − (1 + τ)wli

}
.

This maximization delivers the following equilibrium labor, output and profit for firms that

are not politically connected

lni =

[
(1− α)

(1 + τ)w

] 1
α

qi,

yni =

[
(1− α)

(1 + τ)w

] 1−α
α

qi,

πn =

[
(1− α)

(1 + τ)w

] 1−α
α

αqi ≡ π̃nqi

Firms can alleviate regulation and bureaucracy costs by hiring a politician. If firm i

employs a politician, it can avoid paying the wedge τ , yet it has to pay a cost of wp. We can

2Doing Business Indicator, The World Bank, 2017.
3Relatedly, a recent paper by Bessen (2016) shows that regulatory rents have been an important part of

the increasing corporate profits in the U.S.. This indicates that market regulations and rent-seeking have
been tightly linked also in the U.S.
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think of wp as an additional wage premium that firms need to pay to politicians4 or as search

or other type of cost that firm incurs to maintain political connection. However, in order to

be able to hire a politician, a firm has to become familiar with the network of politicians.

We capture the ability of hiring a politician by assuming that firms can be in two states,

si ∈ {0, 1} . si = 0 implies that firm i is not yet familiar with the political network, whereas

si = 1 implies that firms are already familiar with the network and can hire a politician if

they want to. In that case, a firm that is in state si = 1 and decides to hire a politician

solves the following maximization problem

πp = max
li

{
qαi l

1−α
i − wli − wp

}
.

This problem delivers the following optimal labor, output, and profit:

lpi =

[
(1− α)

w

] 1
α

qi,

ypi =

[
(1− α)

w

] 1−α
α

qi,

πp =

[
(1− α)

w

] 1−α
α

αqi − wp ≡ π̃pqi − wp

Comparing these optimal decisions, we can now state our first result.

Prediction 1 Connections lead to higher sales and employment, yet lower labor produc-

tivity

lpi > lni , y
p
i > yni ,

ypi
lpi
<
yni
lni
.

Firms optimally choose to get connected (given that si = 1) if πp > πn. This implies a

threshold rule: firms choose to connect iff

qi > q∗ ≡ wp
π̃p − π̃n

We will come back to this threshold in the next section, after discussing firm’s dynamic

problem.

4Indeed, in Section 4.2 we will show that politicians’ within-firm wage premium is sizable.
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2.2 Dynamics

In every sector i, there is a potential entrant who receives a new innovative idea with prob-

ability p with a quality step λ ∼ U
[
0, λ̄

]
. A new idea of the quality step λ improves the

existing productivity qi according to the following law of motion

qnewi = (1 + λ) qi.

Accessing the network of politicians takes time. We assume that α0 of the entrants start

with si = 1 and 1−α0 start with si = 0. Firms switch from being si = 0 to 1 at the Poisson

arrival rate ζ.

A new entrant replaces the existing incumbent if it can undercut the incumbent by having

higher profits. This means that entrant’s regulation-adjusted quality of innovation should

be superior to that of incumbent. Denote by q∗∗ a threshold quality after which incumbent

optimally chooses to hire a politician if si = 1. Notice that q∗∗ can potentially be different

from the threshold q∗ that we derived in the previous section. Now we have 3 cases depending

on the value of incumbent quality and network status: 1) q < q∗∗, 2) q ≥ q∗∗ and si = 0,

and 3) q ≥ q∗∗ and si = 1.

Case 1. q < q∗∗

If incumbent’s quality is less than the threshold, qi < q∗∗, incumbent gets replaced

with probability p: since the incumbent is not connected, any productivity improvement by

entrant gives it a competitive advantage over the incumbent.

Case 2. q > q∗∗ and si = 0

If the incumbent is above the threshold q∗∗, then the probability of being replaced depends

on the quality of the innovation and also the connection status of the incumbent and the

new entrant. If the incumbent is in status si = 0, we are again in the above case and the

incumbent gets replaced with probability p.

Case 3. q > q∗∗ and si = 1

However, if the incumbent is in state si = 1, and hence is already connected, now the

entrant has to also overcome the regulatory burden that the incumbent is immune to thanks

to its political connection. A connected incumbent will get replaced by a connected entrant

with probability p. However, if entrant is not connected (share 1 − α of entrants), more

radical innovation will be needed to replace the incumbent. This will happen if step size of

innovation
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λ ≥ λ∗ ≡ π̃p − wp/qi
π̃n

− 1.

This implies that expected probability of creative destruction that connected incumbent

is facing is

αp+ (1− α)
λ̄− λ∗

λ̄
p =

[
1− (1− α)

λ∗

λ̄

]
p,

< p.

Prediction 2 In connected industries, entry rate is lower, hence connected incumbents

are less likely to exit.

The intuition for this result comes from the fact that an entrant must come up with a

larger (more radical) innovation in order to overcome the advantage of the incumbent due

to its political connectedness. Since the probability of a larger innovation is lower, this also

lowers the entry probability and the probability that the incumbent gets displaced.

Prediction 3 In connected industries, average firm size is bigger.

This result follows from the fact that connected firms eliminate the regulatory burden

and therefore hire more labor - even though they are not necessarily more productive.

Now we can solve for the value of being connected. First, consider a firm with q < q∗∗

and denote its value by V−1. Then

rV−1 = π̃nq − pV−1

which implies

V−1 =
π̃nq

r + p
.

Now, we can solve for the value of a firm that is in state si = 0 with q ≥ q∗∗. Denote its

value by V0 :

rV0 = π̃nq − pV0 + ζ (V1 − V0) .

For a firm that is in state si = 1 with q ≥ q∗, we have:

rV1 = π̃pq − wp − p
[
1− (1− α)

λ∗

λ̄

]
V1
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This implies:

V1 =
π̃pq − wp

r +
[
1− (1− α)λ

∗

λ̄

]
p
.

Comparing V1 to V−1, firms connect politically if and only if

qi > q∗∗ ≡ wp

π̃p − r+[1−(1−α)λ
∗
λ̄ ]p

r+p
π̃n

This result predicts that large firms with qi > q∗∗ are more likely to be connected. In

addition, note that π̃n is decreasing in τ and λ∗ is also decreasing in π̃n. Hence the cutoff

q∗∗ is decreasing in τ, which implies that firms in more regulated industries are more likely

to be connected. Now we list these predictions.

Prediction 4 In more regulated industries (large τ), firms are more likely to be politically

connected.

This follows from the fact that more regulation imposes larger costs on the firms. Hence

eliminating these burdens through political connections becomes more profitable when the

regulations are heavier.

Prediction 5 Large firms are more likely to be connected.

The key difference of this prediction from Prediction 2 is the direction of causality. Our

model predicts a two-way impact: As firms grow in size, they find it worthwhile to incur the

connection cost to eliminate the regulatory burden. Hence larger firms are more likely to be

connected. And when they connect and remove the regulatory burden, they grow even more

by hiring more workers (Prediction 2).

Another important insight comes from the comparison of static and dynamic cutoffs. We

see that q∗∗ < q∗ as illustrated in Figure 3. This is a preemptive motive to acquire political

connection. Incumbents anticipate that by getting connected they discourage entry and

survive longer, hence they optimally choose to seek for a connection earlier.

Discussion

Distinction between static and dynamic effects is important: statically, connections re-

duce frictions but dynamically the model implies lower entry and reallocation, resulting into

markets that are dominated by older and larger firms with low innovation and productivity

growth.

Notice that the effect of connections on firm entry and competition is not hard-wired

in our model by assuming that politicians intentionally create special entry barriers to the
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Figure 3: Decision Rules

∗∗ ∗

Dynamic	cutoff Static	cutoff

Don’t	connect Connect	to	lower	static	
production	cost

Connect	to	lower	static	
production	cost		and	to	
prevent	dynamic	entry

firms. Instead, this is an endogenous response of the economy to the market conditions where

particular benefits (in this case, lower wedges) are distributed unequally. This response

arises only dynamically: in a static environment, political connections are socially optimal

and represent the second best, given the market frictions. Hence, starting with the ”best”

environment with no direct negative effect from political connections, a simple glimpse into

dynamic effects from misallocation uncovers important aggregate costs. This illustrative

model provides some new theoretical insights into understanding social costs from political

connections.

3 Data Description

We match multiple administrative datasets to build a comprehensive dataset on firms, work-

ers and local politicians in Italy for the period of 1993-2014. Central piece of this data con-

struction is individual-level data from the Italian Social Security Administration (INPS)5.

We combined a rich Social Security (SS) data with administrative data on firms’ balance

sheet (Cerved) to obtain a detailed matched employer-employee dataset for Italy. On the

firms’ side, data is further augmented with information on firm-level innovation activities

derived from patent records in PATSTAT. On the workers’ side, we combine SS data with

individual records on local politicians from the Italian Registry of Local Politicians (RLP).

This allows us to track whether a politician works in private sector while holding an office.

Literature has coined a term “moonlighting politicians” to refer to such politicians. It is

5Data became available through the VisitINPS Scholars program initiated in 2016.
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exactly moonlighting politicians that help us to identify political connections at the firm

level. Finally, we also construct a new data on all local elections in Italy held in 1993-2014.

Together, RLP and elections data allow us to define various attributes of individual political

careers, such as type of position and rank, party affiliation, and participation in marginally

contested elections.

Below, we provide an overview of the main steps undertaken during the data construction.

Figure 4 gives a graphical illustration of data construction6. We delegate a more detailed

discussion to Appendix A.

Figure 4: Data Construction

Registry of Local Politicians (RLP)
Source: Ministry of the Interior.

• Universe of local politicians (regional, 
province, municipality level) 1985-2014.

• Demographics, education, position 
attributes, party affiliation.

Elections Data
Source: Ministry of the Interior +

own data collection.

• Local elections (regional, province, 
municipality) 1993-2014.

• Candidates, parties/coalitions, 
allocation of votes and seats.

• Identify marginally contested elections 
and its winners and losers.

Patent Data 

Source: PATSTAT.

• All EPO patents filed by Italian firms in 
1990-2014.

• Patent characteristics: patent families, 
grant status, technology classification, 
citations received, claims.

Firm-level Data

Source: Cerved.

• Universe of limited companies, 1993-
2014.

• Balance sheet, income statement, 
measure of firm’s credit worthiness.

Social Security Data

Source: INPS

Universe of private sector (except agriculture), 1985-
2014.

Individual level: 

Demographics,
Employment history, 
Labor income, 
Job characteristics.

Firm-level: 

Entry/exit
Size
Worker characteristics, 
Industry, 
Location.

Individual Level Firm Level

3.1 Politicians Data (RLP and Elections Data)

We build a dataset on local politicians in Italy by making use of Italian Registry of Local

Politicians (RLP) and the data that we collect on local elections over time. Table 1 provides

6For RLP, we thank Massimiliano Baragona of the Ministry of Interior, for election data, we thank
Roberto Brocchini for providing archive on Italian elections, Marco Chiurato for his help in complementing
the data with information taken from Wikipedia and from local newspapers.
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short descriptive statistics, while below we overview construction and variable definitions.

3.1.1 Registry of Local Politicians (RLP)

We obtain administrative data on local politicians ( RLP) from the website of the Ministry

of the Interior7. RLP contains information on all local politicians at the municipality (more

than 8,000 municipalities), province (110 provinces) and regional (20 regions) level in Italy.

Data spans a period from 1985 to 2014. For each individual, we have his/her detailed de-

mographic information, attributes of their political positions - location, position description

(like council member, mayor, regional president, vice-president, etc), appointment date.

We proceed in the following steps described in more details in Appendix A.1.1. First, in

order to link individual politicians to Social Security data on private-sector employees, we

recover social security numbers from the demographic information on politicians. Second,

we clean and standardize political party names and define majority parties at local level.

This lets us identify whether a politician is a member of a majority at local level. Finally,

based on politician’s position attributes, we define a politician’s position level for whether

he/she is a politician at the municipality, province or regional level. We also define position

rank for whether a politician holds a high-rank position as mayor/president/vice-president,

or not.

3.1.2 Elections Data

We obtain data on elections at the regional, province and municipality level from the Ministry

of Interior. Data generally covers period of 1993-2014. However, the electronic archives

we got from the Ministry did not have data on province-level elections for the 1993-2004

period. We hand-collected that data from various sources online (online election archives,

Wikipedia). Five special-status regions were not included in the Ministry’s data either. We

hand-collected information for those elections as well. In the end, for each election, we have

information on identities of all the candidates (names and demographics); parties/coalitions

running for elections and candidates that they support; votes obtained (for candidates and

parties) in each election round, if multiple; allocation of seats in the council.

7This data has been used in several other studies. Among others, Gagliarducci and Manacorda (2016)
link RLP to the sample of INPS private sector workers to study the effect of being in office on labor market
outcomes of family members. Cingano and Pinotti (2013) link this data with a sample of Italian firms
(INVIND) and find that political connections help firms to increase sales by shifting public demand to
connected firms.
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This data serves two purposes. First, we define winning/majority parties for each elec-

tion - this complements and in a way verifies majority parties constructed using the previous

source of data, RLP. Second and more importantly, we identify marginally contested elec-

tions and party affiliations of marginally losing and winning parties or coalitions.

Institutional Background:

We outline a brief note on the electoral system and administrative elections in Italy for

the period of interest with an emphasis on electoral rules that are important for our purpose.

Elections at the municipality level. Elections generally take place every five years and

voters are asked to choose a mayor and members of the local council. There are around

8,100 municipalities in Italy with population ranging from as small as 100 inhabitants to as

much as 3 million. Electoral law somewhat differs based on the size of municipality, however

main features are as follows.

Elections generally take place through the “one-shot” voting mechanism with a majori-

tarian system for both the mayor and the council members. Votes are casted both for mayor

candidates and parties that support those candidates (usually, separate voting is not allowed

so that voters cannot pick candidates and parties from competing tickets, except for large

municipalities). For larger municipalities (with population > 15, 000), if none of the candi-

dates gets an absolute majority (> 50%), election goes to the second round. Votes casted

for the candidates not only determine identity of a mayor but also determine allocation of

seats to parties associated with the candidates. Importantly, winning candidate is generally

guaranteed to have a majority of seats in the council (2/3 in case of smaller municipalities

and at least 60% in larger municipalities). Existence of this majority premium generally

implies that definition of a majority using mayor’s affiliation should be similar to definition

of a majority using council members’ affiliations. After determining total allocation of seats

to a winning coalition, further allocation of seats within a winning coalition or outside of it

is determined by votes casted for each party.

Elections at the province level. Elections are generally held every 5 years and voters

choose a president of a province and a council composition. Electoral rules for province-level

elections are very similar to the ones for large municipalities (with population > 15, 000) as

described above8.

8Major reform concerning province-level elections got enacted around 2014. The reform in essence re-
moved province-level elections.The Budget Law for 2012 (L214/2011: Disposizioni urgenti per la crescita,
l’equitáe il consolidamento dei conti pubblici) has laid the foundations for a provincial reform in Italy, that
came to an end in 2014 with the so-called Delrio Law (L56/2014). In the transitory regime, elections in the
provinces of in Como, Belluno, Vicenza, Genova, La Spezia, Ancona, Caltanissetta e Ragusa were not held.
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Elections at the regional level. Regional elections are generally held every 5 years in

twenty regions of Italy. Before 1995, voters did not directly choose a regional president.

Instead, they casted votes for parties/coalitions that formed a council. Allocation of seats

between parties was based on a proportional system. However, since 1995, voters cast votes

for a presidential candidate as well as for parties/coalitions forming a government (with lists

running at district or regional level). There is no possibility of runoff. Coalition associated

with a winning president is generally assured a majority of seats in the government (at least

55%). The rest of seats is determined by votes casted for parties9.

Identifying marginally contested elections.

Our detailed elections data allows to identify elections that have been contested on a

thin margin. As described above, votes casted for the candidates (not for parties) determine

margin of victory in a particular election10. In most cases, threshold percent of votes is

50% and if that threshold is not reached by anyone, the runoff is expected. Important

exceptions to the 50%-threshold are elections in small municipalities with population smaller

than 15, 000 inhabitants and regional elections. In such cases, second round is never held

and winner is the one getting largest share of votes in the first round.

Define p1 as share of votes obtained by a winner and p2 - share of votes by a runner-up.

Then we define a margin of victory as difference between p1 and p2. At the regional level,

there are 85 elections in the 1995-2014 period. 62 among them were decided with a 20%

margin, while 15 were decided with a thin 4% margin. At the province level, there were 404

elections: 254 decided with a 20% margin and 52 with a 4% margin. Finally, among 36,516

municipality elections, 20,190 were decided with a 20% margin and 4,819 with a 4% margin.

In the analysis, we experiment with various definitions of marginal elections depending on

a margin of victory. However, even with a thin margin of victory of 4% (say, election with

48%-52% outcome), we have more than 72 thousands of RLP politicians during the years of

marginal elections for whom we can identify whether they belonged to a marginally winning

or losing party (details in the next subsection)11.

As a result, in a transition period of 2012-2014, many provinces did not hold scheduled elections. Instead,
they extended the mandate of previous politicians. Hence in those cases, we can impute results from the
previous elections by extending the results to more than 5 years.

9Parties may decide to compete within district or regional lists and this will have an effect on how the
seats are allocated. However, in our data we have the information on the allocation of final seats, hence we
do not need to work out all these details to determine how many seats a party/coalition is getting.

10We cannot define marginal elections for regional elections before 1995 as presidents were not chosen
directly and seats were allocated proportionally based on votes for parties.

11And among them, about 20 thousands match to INPS hence providing many cases for our regression
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3.1.3 Combining RLP and Elections Data

To sum up, we use RLP and Elections Data to define several variables for majority/winning

parties at local level. We also identify marginal elections and parties/coalitions that have

won/lost on a thin margin. Next, we combine these variables with the individual-level

panel from RLP12 and determine if a politician belongs to a majority/minority by various

definitions at a particular point in time. Since this procedure involves several challenges

regarding party identifiers, we describe them in details in the Appendix A.1.3.

We summarize variable definitions and the derived politicians data in Table 1. Data is a

panel of all local politicians in the 1993-2014 period.

3.2 Firm-level Data (Cerved)

We use proprietary firm-level data from Cerved administered by the Cerved Group13 Data

provides balance sheet and income statement for all incorporated firms in Italy for the 1993-

2014 period. First that are not covered are mainly small firms – sole proprietorship or small

household producers.

We make use of standard company accounts variables such as assets, capital stock, rev-

enue, profits. Some treatment of those variables in our data is described below. All nominal

variables are deflated with GDP deflator (2014 is the base year). Cerved data does not

provide a reliable variable for employment, hence we derive employment variable from the

match to INPS (discussed below). We replace with missing the value added if the firm reports

negative value added (valore aggiunto operativo). For tangible fixed assets (immob mat)

and intangible fixed assets (immob immat), we impute zeros when possible. In most cases,

Cerved data does not distinguish between missing values and zeros. In particular, obser-

vations whose value is less than 1 (in 1000) and observations that are truly missing in the

report will both appear as missing. This is the case with tangible and intangible fixed assets

variables. We impute with 0.5 (in 1000) value of intangible assets if value of tangible assets

is not missing, and vice versa for tangible assets14.

discontinuity design that we exploit later on.
12Elections data is a panel with time gaps in between of elections. We impute most recent election outcomes

(up to 4 years) to fill in those time gaps.
13This data correspond to the Italian segment in ORBIS (Aida).
14We verify these imputations with another simple imputation of missing values in the panel of firms by

just imputing missing value with latest non-missing observation. If such imputation is too off from the initial
imputation of 0.5, we revert back to missing value.
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3.3 Patent Data (PATSTAT)

Our patent data source is the European Patent Office Worldwide Patent Statistical Database

(EPO PATSTAT)15. PATSTAT provides coverage of all patents published (granted or not)

at EPO up to Spring 2016. This amounts to up to 60 million patent applications from 1978

to 2014. We use this data to understand patenting activity of firms in Italy.

We proceed in the following three steps that are described in more detailes in Appendix

A.2. First, we identify 71,240 EPO patent families applied by Italian firms. Second, to

match patent records with our firm-level datasets, we undertake an effort to combine existing

matches with our own company name cleaning routines. We identify 13,904 Italian companies

that file for patents. To the best of our knowledge, this is by far the best match of Italian

patent records to Italian firms spanning the longest time period.

Third, for all patents, we extract information on their technology classification, appli-

cation date, grant status, number of claims, and backward and forward citations. This

data allows us to construct various measures of firms’ patent-based innovation measures.

Appendix A.2 provides the details. Here, we summarize our three main measures. First

is yearly patent counts filed by firms. The second is citations-adjusted patent counts that

weight more heavily the valuable patents receiving more citations from subsequent patents.

And the third is family-size-adjusted patent counts. Patent family size can serve as another

proxy for patent quality as it may indicate extent of geographical protection an applicant is

seeking for. We report summary statistics of these measures in Appendix Table 2.

3.4 Social Security Data (INPS)

We access the Italian Social Security Data from the Italian National Institute of Social

Security (INPS) within the VisitINPS Scholars program. INPS data covers the universe of

private sector workers (whose employers make social security contributions) in Italy. Self-

employed, public employees, workers in agriculture, or contractors are not in the data. Part-

time workers as well as temporary contracts are observed. To have a consistent time span

across datasets, we focus on 1993-2014 period of this data.

On the workers side, SS data provides complete information on their employment his-

tory. Among others, we have information on identity of firms they work for, job start

and separation dates, gross labor income (including bonuses and overtime), number of

months/weeks/days worked in a year, type of contract (for example, full-time or part-time,

15“EPO Worldwide Patent Statistical Database – 2016 Spring Edition”
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permanent or temporary), position level (from which we classify white-collar16 and blue-

collar workers), occupation. In addition, data provides individual demographic information,

job and residence location (municipality).

On the firms side, we have information on all workers they employ and corresponding

characteristics of those workers described above. This lets us construct a reliable variable

on firm size, variables on average wages paid, or various work-force composition variables.

Importantly, we also have a complete demographic data on the firms – firm industry classi-

fication (ATECO and CSC), location, entry and exit dates17. For our purposes, this data is

essential since this is a firm-level data on universe of private-sector firms and we can study

firm entry, exit and turnover over time, location, or industry.

Details on how we construct employment, wages and related variables from INPS are

delegated to Appendix A.3.

3.5 Matched Dataset (Politicians Data + INPS + Cerved + PAT-

STAT)

We match all the datasets described separately in previous sections. We start by combining

INPS data with the Politicians Data. Next, we combine this data with firm-level datasets

from Cerved and PATSTAT. While we refer a reader to Appendix A.4 for more details, here

we list main variable definitions at the firm level and report descriptive statistics for the final

matched dataset in Tables 5.

At the firm level, we define a firm as being connected at time t with a politician of certain

type if at least one politician of that type is working in a firm at time t.18 Specifically, these

are the main variables we use throughout the paper.

Connectionit – dummy if at least one politician is working in a firm i at time t.

Connection Provinceit – dummy if at least one province-level politician is working in

firm i at time t.

Connection Regionit – dummy if at least one regional politician is working in firm i at

time t.

16Job is classified as white-collar if classification, qualifica1, based on UniEMENS is equal to 2,3,7,9,or P,
which entails managers, executives, professionals, office workers.

17It is hard to identify establishments using this data, so we will always refer to firms. However, in Italy
the average number of establishment per firm is 1.07 (Istat, Census 2011 data).

18Interestingly, looking at the first time that a firm becomes connected, we observe that in the majority
of the cases (63%) the firm gets connected through a worker already employed for the firm, while in the
remaining cases the politician gets hired by the firm (either moving from another firm, being a “professional
politician” or a self-employed/professional not enrolled in INPS.
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Connection high− rankit – dummy if at least one high-rank politician (mayor, regional

or province president, vice-mayor or vice-president, (vice-)president of a council) is working

in firm i at time t.

Connection majorityit – dummy if at least one politician from president’s/mayor’s party

is working in firm i at time t.

4 Empirical Analysis

This section documents a number of empirical regularities on firm-level political connections

and firm dynamics in Italy. In Section 4.1, we first document that firm-level connections

are widespread, especially among large firms. We summarize aggregate trends in the data

and devote more time on describing institutional background. Next, we present our main

empirical results. The results can be summarized as follows:

1. Firm-level connections are widespread, especially among large firms.

2. Market leaders are most politically connected but show lowest innovation effort.

3. Politically connected firms are less likely to exit.

4. At the firm level, political connections are associated with higher employment and sales

growth but not the productivity growth. Regression discontinuity analysis illustrates

that this relationship is also causal from acquiring connections to growth.

5. More connected industries face lower firm entry, but conditional on entry, entrants are

more likely to be connected than in other industries.

6. Industries with higher share of politically connected firms have lower share of young

firms and show lower average firm growth and productivity.

4.1 Firm-level Political Connections in Italy: Aggregate Trends

and Institutional Background

Firm-level connections are widespread. While average share of connected firms by industries

is around 4%, connected firms account for 32% of employment across industries. Reminiscent

of this observation, connections are particularly common among large firms – 44% of large

firms with more than 100 workers are connected with politicians. Most connected industries
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in the data are pharma, water supply, utilities/ waste disposal, telecommunications, airlines,

and finance industries. Industries that have lowest share of connected firms are related to

personal services, sanitary/veterinary services, repair/restoration, food-related industries.

Even if the core of our analysis is based on the 1993-2014 period, data on politicians

are available from 1985 and looking at the evolution of political connections since then

uncovers some interesting insights from the recent Italian history. The share of connected

firms across industries has been more or less stable over the whole time period under analysis

(1985 to 2014) as Panel (a) of Figure 5 documents. However, interesting observation is a

sharp drop in connections in the early 90’s19. Incidentally, this corresponds to a famous

historical episode when the biggest corruption scandal that goes under the name of Mani

Pulite (“Clean Hands”), or Tangentopoli (“Kickback City”), hit the scene. On February

1992, the investigation Mani Pulite started in Milan, with the arrest of Mario Chiesa, a

socialist manager of a public hospice, and subsequently widened to the entire country and saw

a huge increase in the number of involved politicians, bureaucrats and entrepreneurs. In a few

years, six former prime ministers, more than five hundred members of Parliament and several

thousand local and public administrators were involved in the investigations ((Vannucci,

2009)). Mani Pulite uncovered a dense network of corruption and bribery throughout Italy.

As a result, Italian parties were completely disrupted, leading to a big change in the political

arena. Within a year since the start of the investigation, leading political figures had been

resigned or went into exile; the major parties disappeared or were completely transformed;

new parties were founded.

Disruption in political connections visible from the data: it could be a result of firms’

precautionary behavior or the time required to rebuild connections after the dissolution of

incumbent parties. Another reason for the growth of the number of political connections

could lie in the radical change in the political class that followed the “Mani Pulite” scandal,

which has in fact ratified the transition from the First (1946-1993) to the Second Republic

(since 1993).20 One of the peculiarities of the transition to the Second Republic was to

remove the so-called “professional politicians” from the political arena, replacing them with

political newcomers, mostly coming from the business sector (Mattozzi and Merlo, 2008).21

19The drop corresponds to about 0.6 percentage points. Given that average yearly number of firms in the
data is about 1.5 million with no particular fluctuations around early 90’s, this drop roughly translates into
9,000 firms.

20In 1993 there was a popular referendum that led to abolition of the proportional electoral system that
characterised the First Republic and to its substitution by a quasi-majoritarian system.

21In March 1994 national elections were held: those elections saw a major turnover in the new parliament,
with 452 out of 630 deputies and 213 out of 315 senators elected for the first time.

23



Whatever the reason, it clearly took very little time for firms to get back to their pre-crisis

level of connections as seen from Panel (a).

Figure 5: Connections over Time

(a) Share of Connected Firms (b) Share of High-Rank Connected Firms

Notes: Figure plots average share of firms that are politically connected across industries over time. Panel

(a) counts firms that are connected with any politician, while Panel (b) counts firms that are connected with

high-rank politicians (mayors, vice-mayors, province/region presidents and vice-presidents).

Interestingly, Panel (b) shows a permanent shift in the level of high-rank connections

across industries. We interpret this picture as a smoking gun for a regime shift from a

more “under the table” relationship between firms and politicians involving corruption and

bribes22, towards more formal ”moonlighting” relationship. Indeed, this shift corresponds

to the period in which high-rank politicians as mayors, presidents, vice-mayors or vice-

presidents acquired higher decision power, hence they were considered more valuable for

firms. In fact, since the 1990s, a few reforms were enacted to shift towards a federal gov-

ernment in which spending and decision-making centers would move from the highest levels,

the central state, to the more local ones, “getting closer” to the citizens.

A change in the electoral rule towards a majority system in 1993 pledged the emer-

gence of an effective alternation in government of competing coalitions and the almost direct

electoral investiture of the Prime Minister. Since 1997, a series of reforms have conferred

regions, provinces and municipalities more functions and more autonomy, so as to culminate

in a reform of the Constitution in 2001. According to the Article 114 of the Italian Con-

stitution, modified in 2001, “The [Italian] Republic is made up of Municipalities, Provinces,

22The estimated value of bribes paid annually in the 80’s by Italian and foreign companies bidding for
large government contracts reached 4 billion dollars (6.5 trillion lire).
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Metropolitan Cities, Regions and the State. Municipalities, Provinces, Metropolitan Cities

and Regions are autonomous entities with their own statutes, powers and functions”23.

In this system, in addition to the central government (two houses of parliament, the

central government and the prime minister), each geographical entity (8,110 municipalities,

103 provinces and 20 regions) has its own local government, with both a legislative and an

executive branch and a head of the executive (mayor, president of province and governor

of region, respectively). Each of these different levels of government has authority over and

responsibility for the provision of local public goods and services, administrative authority

over the issuing of permits and licenses, and some power to set up rates for certain categories

of taxes. The regions were given financial autonomy to decide freely how to spend their

money and organizational autonomy to decide how many councilors to have and how much

to pay them24.

This short excursus of two decades of Italian history is necessary to understand the roots

of local political power that, after a series of events, have been increasing; for this reason,

the links between entrepreneurship and politics have evolved and possibly strengthened over

time.

4.2 Wage premium

Politicians earn significant wage premia relative to their co-workers in the same firm. Clearly,

differences in worker characteristics and type of work that they perform could be a large part

of this wage difference. We undertake the following two steps in order to identify a part of

the premium that comes purely from being a politician.

As a first step, we compute politicians’ within-firm wage premium by type of job – white-

collar or blue collar, and gender (see Appendix Table 6). While municipality-level politicians

secure on average about 7% wage premium over their co-workers, province-level and regional

politicians earn premia that are much higher and, on average, go up to staggering 100%

for white-collar male regional politicians. Likewise, high-rank politicians exert a significant

23The Ministry of Internal Affairs exercises control over the organs of local authorities by providing for
acts aimed at dissolution and by taking measures to remove or suspend local administrators in the cases
provided for by law.

24Although the 1948 Constitution directly granted even the non Special Statute Regions legislative powers
for limited matters such as agriculture, public works, tourism and urban planning, the Regions were little
more than paper entities even after the first Regional Councils for ordinary statute Regions were elected in
1970 (Del Duca and Del Duca, 2006). In other words, the Regions had no power to impose taxes and they
depended only on State revenue sharing.

25



Figure 6: Within-Firm Wage Premium Before and After Becoming a Politician
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Notes: The figure depicts within-individual within-firm wage premium before and after becoming a politician.

Vertical line at zero corresponds to the event when a worker becomes a politician for the first time. Premium

is calculated as the ratio of individual’s weekly wage to her coworkers’ average weekly wage. Sample includes

all the workers that at some point during their career in a firm become politicians. Individuals that hold

political positions during the first year of their job in a firm are excluded.
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wage premia going up to 23%. However, this comparison still leaves a room for the effect of

other job and (observable or unobservable) worker characteristics.

To mitigate these concerns, in the second step we look at the within-individual within-

firm wage premium evolution before and after a worker becomes a politician while working in

a firm. Figure 6 depicts worker’s wage premium relative to his co-workers25 within the same

firm in a 3-years window before and after becoming a politician (the vertical line at zero). In

this example, all the fixed worker characteristics as well as firm and colleague characteristics

are conditioned on. Hence, a jump in the premium at zero is attributed to an acquisition

of political power by a worker. It could indicate that workers become more valuable to the

firms after they enter into politics. However, we cannot exclude that workers have higher

outside option after acquiring political power and hence can bargain higher wages.

The evidence in this section indicates that firms value their worker-politicians beyond

usual worker characteristics and incur significant cost for being connected with them.

4.3 Rent-Seeking vs Innovation

How aligned are the rent-seeking and innovation incentives across firms? As our theoretical

model highlights, firms may follow different competition strategies: while some innovate in

order to compete, others rely on rent-seeking and fail to contribute to the overall productivity

growth. Significant social cost may arise if resources are reallocated towards connected firms

and if they have low incentives to innovate and increase productivity.

Indeed, a striking feature of the data is a strong positive relationship between market

leadership and politician intensity on the one hand, but a strong negative relationship be-

tween market leadership and innovation intensity, on the other hand.

In particular, we rank each firm based on its employment share in a market, where market

is defined at the industry × region × year level26. We then zoom in into the top 30 firms

across markets and plot various measures of political connections and of innovation over

firm’s market rank. In the Appendix B, we provide additional evidence by looking at all

firms and not just at the largest market leaders.

Figure 7 shows relationship between politician intensity and market leadership. Out-

come variable in Panel (a) is number of politicians employed per 100 white-collar workers,

while Panel (b) is for majority-member politicians per 100 white-collar workers. Plots here

25It does not make a difference whether we look at all co-workers or continuing co-workers. Hence, a
change in composition of co-workers does not play a role.

26Defining market by industry, excluding regional dimension, leads to similar results.
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represent binscatters from regressions that adjust outcome variables with industry, region

and year fixed effects. We observe that market leaders are more politician-intensive. This

relationship persists in a more general regression of the same outcome variables on firm’s

market share as illustrated in the Appendix Figure 15. Panels (b) and (d) also control for

firm size, indicating that even conditional on size, market leadership is significantly corre-

lated with political connections. In Appendix Figure 16 we also shows that market leaders

employ more high-rank politicians relative to their connected competitors.

Figure 7: Connections over Market Leadership

(a) Politicians per 100 workers
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(b) Majority-level Politicians per 100 workers
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Notes: Figure plots average outcome variable over firms’ size rank for top 30 firms in the markets. Market
is defined at (6-digit) industry × region × year level. Markets in which top 1 firm holds less than 10% share
are dropped. Outcome variables are demeaned with industry, year and region fixed effects. In Panel (a), the
outcome is connection dummy. In Panel (b), the outcome is majority-member politician dummy. In Panel
(c) the outcome is politicians per white-collar workers. Panel (d) considers majority-member politicians per
white-collar workers. Market leaders are more politically connected relative to their competitors.

Interestingly, a completely opposite picture uncovers when focusing on innovation inten-

sity against market leadership as shown in Figure 8. Different panels plot various measures of

firms’ innovation over firm’s market rank. Panel (a) considers patent counts per 100 white-

collar employees, while Panel (b) considers intangible assets over value added as another

measure of innovation intensity. In addition to having lower intensity of innovation, we show

that type of innovation that leaders conduct is also of lower relative quality, as measured

by 5-year patent citations or patent family size (Appendix Figure 17). Appendix Figures 18

and 19 extend this relationship to all firms controlling for firms’ market share and for firm

size in panels (b) and (d). Figures also show similar relationship for labor productivity as

another measure that is directly linked to firm’s innovation.
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This result on innovation is consistent with earlier findings with the U.S. firms. Using

U.S. Census data, Akcigit and Kerr (n.d.) show that larger firms are less innovation-intensive

and conduct less impactful innovations. Hence, the observation that large firms and market

leaders are less innovative is perhaps less surprising. However, the problem may lie in the

fact that firms that are least innovative are the ones that turn to rent-seeking more. Hence,

in this section we establish our first stylized fact:

Fact 1.Market leaders are most politically connected but show lowest innovation effort.

Figure 8: Innovation over Market Leadership
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Notes: Figure plots average outcome variable over firms’ size rank for top 30 firms in the markets. Market

is defined at (6-digit) industry × region × year level. Markets in which top 1 firm holds less than 10% share

are dropped. Outcome variables are demeaned with industry, year and region fixed effects. In Panel (a), the

outcome is patents per 100 white-collar workers. In Panel (b), the outcome is intangible assets over value

added. Market leaders are less innovative relative to their competitors.

4.4 Connections and Firm Survival

Next, we turn to explore what kind of outcomes at the firm level are associated with or driven

by firm’s connections. In this subsection we focus on firm’s survival, while in Subsection 4.5,

we look at growth rates, Subsection 4.6 then will revisit survival and growth results in a

regression discontinuity setting.

In the data, differences in survival probabilities of firms with different connection statuses

are large. To illustrate this, Figure 9 presents Kaplan-Meyer survival estimates splitting
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sample of firms based on connection status over their lifecycle. Blue curve represents firms

that have never been connected, orange curve represents firms that have been connected but

never at the high-level, and red curve bundles the firms that have ever been connected with a

high-level politician. These unconditional estimates show that existence of connections and

strength of connections both are positively associated with firm’s survival. Clearly, large

part of this should be driven by the fact that connected firms are also larger. In addition,

firms that survive longer have higher chance of being observed as connected. To address

these issues, we conduct Cox survival analysis for the universe of firms in our data, reported

in the Appendix Table 7. Main explanatory variables are connection dummy and high-rank

connection dummy. Regressions also control for firm size, firm’s market share and year

dummies.

We find that conditional on observables, firms that are connected have lower hazard and

therefore a longer survivor time. Survival time increases even further if a firm is connected

with a high-rank politician. Relative to non-connected firms, firms that are connected with

high-rank politicians experience 0.243 decline in log hazard rate.

Figure 9: Kaplan-Meyer Survival Estimates by Connection Status
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Notes: Kaplan-Meyer Survival Estimates by maximum level of connections over the lifetime. Blue curve
represents firms that have never been connected, orange curve represents firms that have been connected
but never at the high-level, and red curve bundles the firms that have ever been connected with a high-level
politician.

Fact 2. Politically connected firms are less likely to exit.
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4.5 Connections and Firm Growth

Do firms that get connected experience higher growth? Since finding and retaining con-

nections should be costly (recall that firms provide significant wage premium to worker-

politicians, especially those in high-level positions), we would expect that connected firms

acquire benefits by expanding in size or revenue. Indeed, we find that connections are as-

sociated with large gains in employment and value added growth to the next period. Table

1 reports regressions of employment growth (columns 1 and 2) and value added growth

(columns 3 and 4) on connection and majority-level connection dummies. Regressions in

addition control for firm’s assets, size, age, as well as year, region and industry fixed effects

in columns 1 and 3; and for year dummies and firm fixed effects in columns 2 and 4. Con-

nection dummy adds 3 pp growth in employment and 1 pp to 4 pp growth in value added

to firms. Connection with majority-level politicians has an additional positive effect.

These results indicate that firms that are getting connected expand in terms of size

and revenue. However, is this growth accompanied by a corresponding growth in firms’

productivities? We find a negative answer to this question. Table 2 shows similar regressions

to Table 1 but for labor productivity growth (columns 1 and 2) and TFP growth (columns

3 and 4). We see that connections are associated with weak decline in productivity growth,

while connections with majority-level politicians are not significant27.

While we usually think of resources being reallocated towards firms that become more

productive, these results indicate that in the presence of rent-seeking, the opposite may

actually be happening. To explore whether part of this relationship is causal and not just

driven by endogeneity, in the next section, we proceed with the regression discontinuity

analysis.

Fact 3. At the firm level, political connections are associated with higher employment

and sales growth but not the productivity growth.

4.6 Causal Inference using Regression Discontinuity Design

We exploit a quasi-random discontinuity caused by local elections decided on a thin margin

to gauge about causality in our previous firm-level results (Lee, 2008). The idea is to compare

firms that have been connected right before a marginally contested election with a politician

from marginally losing versus marginally winning parties. Since outcomes of closely contested

27Appendix Tables 8 and 9 show that results are somewhat similar if instead of majority-level connections
we use high-rank connections as a control.
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Table 1: Connections and Firm Growth

(1) (2) (3) (4)
Empl growth Empl growth VA growth VA growth

Connection 0.032∗∗∗ 0.040∗∗∗ 0.039∗∗∗ 0.014∗∗∗

(26.40) (26.11) (24.33) (6.65)

Connection major 0.003∗ 0.007∗∗∗ 0.010∗∗∗ 0.002
(1.96) (3.78) (4.87) (0.99)

Log Assets 0.065∗∗∗ 0.203∗∗∗ 0.036∗∗∗ -0.091∗∗∗

(267.14) (268.76) (118.75) (-89.75)

Log Size -0.077∗∗∗ -0.384∗∗∗ -0.080∗∗∗ -0.235∗∗∗

(-256.15) (-490.37) (-217.56) (-251.16)

Age -0.002∗∗∗ -0.011∗∗∗ -0.004∗∗∗ -0.005∗∗∗

(-89.31) (-142.02) (-145.67) (-44.34)
Year FE YES YES YES YES
Region FE YES NO YES NO
Industry FE YES NO YES NO
Firm FE NO YES NO YES
Observations 6545131 6585740 5684519 5710338

Notes: Firm-level OLS regressions. Dependent variable is columns 1 and 2 is employment growth from time t

to time t+1 as defined in equation 2. Dependent variable is columns 3 and 4 is value added growth from time

t to time t+1. Main variables of interest are Connection – a dummy variable equal to one if firm is connected

with a politician, and Connection major – a dummy equal to one if a firm is connected with a majority-

member politician at time t. Regressions in addition control for firm’s assets, size, age, as well as year, region

and industry fixed effects in columns 1 and 3; and for year dummies and firm fixed effects in columns 2 and

4. Robust standard errors clustered at firm level reported in parentheses. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

32



Table 2: Connections and Firm Productivity Growth

(1) (2) (3) (4)
LP growth LP growth TFP growth TFP growth

Connection -0.014∗∗∗ -0.028∗∗∗ -0.008∗∗∗ -0.019∗∗∗

(-8.22) (-12.48) (-6.03) (-10.65)

Connection major -0.001 -0.004 0.000 -0.003
(-0.27) (-1.55) (0.15) (-1.30)

Log Assets -0.028∗∗∗ -0.274∗∗∗ -0.001∗∗∗ -0.106∗∗∗

(-83.23) (-236.12) (-4.86) (-116.33)

Log Size 0.021∗∗∗ 0.274∗∗∗ -0.006∗∗∗ 0.125∗∗∗

(55.72) (255.00) (-18.20) (145.41)

Age -0.001∗∗∗ -0.002∗∗∗ -0.001∗∗∗ -0.003∗∗∗

(-47.83) (-17.48) (-46.37) (-31.58)
Year FE YES YES YES YES
Region FE YES NO YES NO
Industry FE YES NO YES NO
Firm FE NO YES NO YES
Observations 5598367 5623077 5271002 5291979

Notes: Firm-level OLS regressions. Dependent variable in columns 1 and 2 is labor productivity (value

added per labor) growth from time t to time t + 1. Dependent variable in columns 3 and 4 is TFP growth

from time t to time t + 1. TFP is calculated using Cobb-Douglas specification where capital is measured

as total assets, labor is given by employment level from INPS and labor share is taken equal to average

industry-level labor share from the data. Main variables of interest are Connection – a dummy variable

equal to one if firm is connected with a politician, and Connection major – a dummy equal to one if a firm

is connected with a majority-member politician at time t. Regressions in addition control for firm’s assets,

size, age, as well as year, region and industry fixed effects in columns 1 and 3; and for year dummies and

firm fixed effects in columns 2 and 4. Robust standard errors clustered at firm level reported in parentheses.
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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elections can be considered as a pure chance (breaking news, weather shock) (Lee, 2008),

discontinuity in outcomes between marginally winning and losing firms after the election

can be attributed to a causal effect of majority-level connections on firms’ outcomes. In this

sense, firms that are connected with marginal losers serve as a control group for firms that

are connected with marginal winners, our treated group.

More formally, denote by m an election that has been decided on a thin margin and

by T (m) a year in which it was held. As discussed in Section 3.1.2, share of votes for

a mayor, president or president at the municipality, province or regional level, respectively,

decides identity of a majority party/coalition. Hence, we define victory margin as a difference

between winning candidate’s share of votes and losing candidate’s share of votes in a decisive

round. yiT (m) is the outcome variable equal to firm i’s employment or labor productivity

growth from T (m) to T (m) + 1. WiniT (m)−1 is a dummy equal to one if a firm i at time

T (m)− 1 employs a politician from a party that marginally wins in the election m.

We estimate a relationship

yiT (m) = α + βWiniT (m)−1 + f(marginm) + (δ1XiT (m) + δ2Xm + δ3XT ) + νiT (m) (1)

where f(margin) is a third order polynomial function estimated on both sides of the thresh-

old. XiT (m) includes firm-level controls: firm’s age and size of a firm at time T (m). Xm is

province dummies, XT includes year dummies and νiT (m) is error term. When the assignment

of treatment is random, our coefficient of interest β – the effect of winning at the margin,

should be invariant to inclusion of additional controls XiT (m), Xm or XT , since they should

be orthogonal to treatment. We validate this assumption below and show results estimating

this equation with or without additional controls.

More than 37 thousand local elections have been held in Italy during the period of 1993-

2014. Among them, more than 5.7 thousand elections got decided on a 5% margin, while

more than 2.3 thousand elections had a thin margin of victory of 2%28. Appendix Figure

20 shows that marginal elections have been geographically scattered all over Italy and there

does not seem to be a particular geographic concentration.

If, in anticipation of closely contested elections, firms hire politicians from both competing

parties, our identification of treated and control groups in RD would be noisy. We check

if this is the case by looking at party composition of politicians within a firm. Indeed, by

28As discussed in Section 3.1.2, up to half of municipality-level elections dropped from the sample because
of ambiguous winner identifiers.
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focusing on firms that hire at least one politician from a marginally winning or losing party,

we see that only 4% of firms simultaneously hire politicians from both competing parties29.

Appendix Figure 21 shows the distribution of share of winners across firms. We see that

firms usually “bet” on one side of an election.

Graphical Analysis. We begin with a graphical analysis of RD when the outcome

variable is firm-level employment growth – Panels (a) and (b) in Figure 10. We plot firm’s

growth from T to T + 1 against margin of victory at time T . Positive margins of victory

denote firms that have been connected at time T −1 with a politician from a party that won

an election at time T with a corresponding margin of victory. Likewise, negative margins of

victory depict firms that are connected with losing politicians. Panel (a) focuses on all the

election that were decided with no more than 10% margin. For visibility, we divide X-axis

into 0.01-wide intervals of the margin of victory at time T and each point denotes average

growth of firms in that interval. The solid lines represent predicted third order polynomial

fits30 from a regression that includes third-order polynomial in margin of victory, a dummy

Winit−1 and an interaction of the dummy with the polynomial (a regression in equation 1

that excludes additional controls). Dashed line represents 90% confidence intervals. As a

robustness check, we repeat same plot for elections within 5% victory margin in Panel (b).

If the regression discontinuity design is valid and has generated random assignment of

who wins in T , a gap in the outcome when margin of victory is equal to zero represents a

credible estimate of the effect of majority-level connections on the outcome. As seen from

Panels (a) and (b), there is indeed a large positive gap in employment growth at the zero

victory margin threshold. This confirms that direction of causality in previous firm-level

regressions does (also) run from political connections to growth. Interesting observation is

that for firms further away from the zero threshold, difference in growth rates is not sizable.

This may indicate that firms connected with fierce competitors of barely winning candidates

are performing worst.

RD plots also confirm causal interpretation of firm-level results on labor productivity

growth. Panels (c) and (d) of Figure 10 show no effects of connections on productivity

growth.

We quantify these figures in Table 3 more precisely. Columns 1 and 3 correspond to the

above RD plots: regressions include Win dummy, WiniT−1, and f(V ictory Margin) – third

order polynomial in victory margin interacted with Win dummy. Coefficient on Win dummy

29In the subsequent analysis, we drop those cases.
30Adding additional orders of a polynomial does not improve regression fit.
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Figure 10: Employment and LP Growth after Election, RD

(a) Employment growth after election(T → T + 1)
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Notes: Figure plots firm’s growth from T to T + 1 against margin of victory at time T . Positive margins

of victory denote firms that have been connected at time T − 1 with a politician from a party that won

an election at time T with a corresponding margin of victory. Likewise, negative margins of victory depict

firms that are connected with losing politicians. For visibility, we divide X-axis into 0.01-wide intervals of

the margin of victory at time T and each point denotes average outcome of firms in that interval. The solid

lines represent predicted third order polynomial fits from a regression that includes third-order polynomial

in margin of victory, a dummy Winit−1 and an interaction of the dummy with the polynomial (a regression

in equation 1 that excludes additional controls). Dashed line represents 90% confidence intervals. Outcome

variable in Panels (a) and (b) are employment growth, while Panels (c) and (d) depict labor productivity

growth. Panels (a) and (c) focus on all the election that were decided with no more than 10% margin,

while Panels (b) and (d) plot elections within 5% victory margin. Figures are normalized such that outcome

variables for marginal losers at the threshold are equal to zero.
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is large and significant for employment growth. It translates into the effect of 5 workers for a

median firm in a sample, and 12-14 workers for an average firm. The effect on productivity

growth is essentially zero.

Main assumption of the RD design is that there is no systematic difference in pre-

determined covariates between firms on the two sides of the threshold. This means that

inclusion of additional covariates should not change the main effect of treatment. Indeed,

after including additional controls such as year and firm province fixed effects, log size and

age in columns 2 and 4, we see that the magnitude of the main coefficients did not change

much.

Table 3: Employment and LP Growth after Election, RD

Empl Empl LP LP
Growth Growth Growth Growth

Win dummy 0.089** 0.079** 0.001 -0.026
(2.25) (2.07) (0.01) (-0.32)

Age 0.000 -0.000
(0.11) (-0.22)

Log Size 0.006* -0.012
(1.91) (-1.64)

f(Victory Margin) YES YES YES YES
Year FE NO YES NO YES
Province FE NO YES NO YES

Observations 11118 11076 6064 6055

Notes: OLS regressions of employment growth (columns 1 and 2) and labor productivity growth (columns
3 and 4) on Win dummy in an election at time T . Growth rates are defines from T to T + 1. We restrict
attention to elections within 10% margin of victory. In the columns 1 and 3, regressions include win dummy,
WiniT−1, and f(V ictory Margin) – third order polynomial in victory margin interacted with win dummy.
Columns 2 and 4 include additional controls such as year and firm province fixed effects, log size and age.
Regressions drop those firms that hire politicians from both of the two competing parties.

Tests for Quasi-Random Assignment. Our identification strategy relies on the

assumption of random assignment of the winner in marginally contested elections at T .

This implies that firms closer to the zero-margin threshold are very comparable and do not

show systematic differences in pre-determined covariates. We begin by examining pre-trends:

Figure 11 illustrates RD plots similar to the above plots but for the employment growth and

labor productivity growth at T − 1, right before the marginal elections. Panels (a) and (b)

show results for employment growth, while Panels (c) and (d) show results for productivity
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growth. We see no significant difference in before-elections growth rates at the threshold.

Next, we show balancing tests for other firm-level covariates at time T − 1 in Table ??.

Our covariates are firm size, firm value added, assets, intangible capital, labor productivity,

profits, age, and firm location dummies for being in the Center or North of Italy. The table

reports differences between covariates of marginally winning and marginally losing firms and

standard errors of the differences in parentheses. Various columns focus on the elections

within 20% victory margin down to the 2% victory margin. There are some statistically

significant differences between winning and losing firms when margin of victory is large.

However, as we move towards thinner margins of victory in the next columns and hence

compare firms that ”by chance” won or lost, we see that statistical difference in covari-

ates disappears reassuring us in comparability of treatment and control groups around the

threshold.
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20% 10% 5% 2%
Margin Margin Margin Margin

Log Size .02 .073** .05 .063
(.023) (.03) (.044) (.073)

Log Value Added .06 .079 .054 .089
(.037) (.05) (.072) (.12)

Log Assets .073* .112** .098 .056
(.041) (.056 (.083 (.13)

Log Intangibles .109* .098 .034 .074
(.061) (.081) (.119) (.196)

Log LP -.014 .006 -.018 -.079
(.017) (.023) (.034) (.06)

Log Profits .019 .059 .015 -.045
(.052) (.069 (.102) (.174)

Age -.493** -.267 -.89** -1.285*
(.23) (.303 (.441) (.704)

Center -.001 -.011 -.02 -.035*
(.006) (.008) (.012) (.021)

North .035*** .033*** .029* .005
(.008) (.011) (.016) (.026)

Observations 21118 12219 6019 2247

Notes: Table reports differences in pre-determined firm characteristics (at time T −1) between firms that are
connected with politicians from a winning party and those connected with losing party. Standard errors are
in parentheses. The covariates are firm size, firm value added, labor productivity, age, dummy for being in
the Center, East or West of Italy, and average level of politicians’ position (ranging from 1-municipality, to
3-region). Each column corresponds to the sample of firms whose politicians participated in elections within
corresponding margins of victory. Hence, the last column compares firms that are just around the threshold
and thus should be very similar.
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Figure 11: Pre-Trend: Employment and LP Growth before Election, RD

(a) Empl growth before election (T − 1→ T )
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Notes: Figure plots firm’s growth from T − 1 to T against margin of victory at time T . Positive margins of

victory denote firms that have been connected at time T−1 with a politician from a party that won an election

at time T with a corresponding margin of victory. Likewise, negative margins of victory depict firms that

are connected with losing politicians. For visibility, we divide X-axis into 0.01-wide intervals of the margin of

victory at time T and each point denotes average outcome of firms in that interval. The solid lines represent

predicted third order polynomial fits from a regression that includes third-order polynomial in margin of

victory, a dummy Winit−1 and an interaction of the dummy with the polynomial (a regression in equation 1

that excludes additional controls). Dashed line represents a running-mean smoothing fit. Outcome variable

in panels (a) and (b) are employment growth, while panels (c) and (d) depict labor productivity growth.

Panels (a) and (c) focus on all the election that were decided with no more than 10% margin, while panels

(b) and (d) plot elections within 5% victory margin. Figures are normalized such that outcome variables for

marginal losers at the threshold are equal to zero.
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4.7 Connections and Industry Dynamics

In Section 2, our theoretical model highlighted that while political connections could relate

to various benefits at the firm level, rent-seeking might have important implications for the

aggregate industry dynamics. Industries with connected incumbents may face lower entry

and reallocation and as a result be dominated by less productive firms with lower growth.

In this section, we provide an empirical evidence consistent with that.

First, we explore whether industries with higher political presence face lower entry by

new firms. At the industry × region × year level, we construct share of connected firms and

firm entry rates. We first run regressions of entry rate on share of connected firms controlling

for year, industry and region fixed effects. Panel (a) of Figure 12 plots scatterplots and linear

fit from these regressions. Each point represents industry× region × year-level entry rate

adjusted for fixed effects. For visibility, we plot binscatters dividing the x-axis into 20 equally

sized bins. We observe a strong negative link between connections and entry.

Interestingly, conditional on entry, in those industries that are more populated by con-

nected firms, new firms tend to start off with connections. Panel (b) of Figure 12 illustrates

this. This may indicate that in those industries, in order to compete with incumbents, en-

trants need to seek for protection. However, we cannot either exclude that other time-variant

factors at the industry level that led incumbents to seek for political connections could as

well make entrants to resort to rent-seeking.

These observations are strongly preserved even if we control for size of top firms in each

industry as seen in the Appendix Figure 22. In line with these observations, Appendix Figure

22 shows that industries that are more politically connected have lower share of young firms.

These findings establish our next fact:

Fact 4. More connected industries face lower firm entry, but conditional on entry, en-

trants are more likely to be connected than in other industries.

Next, we explore whether industries that are more politically connected grow faster or are

more productive. Similar to the previous figures, at the industry × region × year level, we

construct share of connected firms, average employment growth and labor productivity series.

We then regress average growth and productivity on share of connected firms controlling for

year, industry and region fixed effects. Panel (a) of Figure 13 plots binscatters from these

regressions, where each dot represents outcome variable adjusted for fixed effects. The figure

shows that industries with higher political presence on average grow slower and are less

productive. Results are similar if we look at finer industry classification or use lagged values
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Figure 12: Connections and Industry Entry

(a) Entry Rate and Connections
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Notes: Each outcome variable at the industry × region × year level is regressed on share of connected firms

controlling for industry, year, and region fixed effects. Each dot represents the adjusted outcome variable,

namely the outcome from which we subtract all covariates (except share of connected firms) times their

estimated coefficients. Regression lines are depicted in each panel. X axis is divided into 20 equally sized

bins and each dot represents average value within that bin. In Panel (a), the outcome is entry rate of new

firms. Panel (b) considers share of connected entrants.

of connections31. This result may not come as a surprise however: recall that large (and

also old) firms are more likely to be connected and they also tend to grow slower and be

less productive. Consistent with this, if we control for the size of top incumbents, we see

that bulk of this negative relationship between connections and productivity/growth at the

industry level comes from the fact that more connected industries are dominated by large

firms.

We summarize our last stylized fact:

Fact 5. Industries with higher share of politically connected firms have lower share of

young firms and show lower average firm growth and productivity.

31Likewise, as Appendix Figure 24 illustrates, results are similar if on the x-axis we look at the share of
high-rank connected firms.
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Figure 13: Connections and Industry Performance

(a) Employment Growth and Connections
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(b) Productivity and Connections
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Notes: Each outcome variable at the industry × region × year level is regressed on share of connected firms

controlling for industry, year, and region fixed effects. Each dot represents the adjusted outcome variable,

namely the outcome from which we subtract all fixed effects times their estimated coefficients. Regression

lines are depicted in each panel. X axis is divided into 20 equally sized bins and each dot represents average

value within that bin. In Panel (a), the outcome is average employment growth rate. Panel (b) considers

average log labor productivity.

5 Final Remarks

In this paper, we studied the link between political connections and firm dynamics both

theoretically and empirically on the example of Italy. Our brand-new data that matched

multiple administrative datasets enabled us to uncover new findings at the micro and macro

levels. We showed that hiring a politician is a common practice, especially among large

market leaders. We also showed the politically connected firms grow in employment and

sales, survive longer in the market, yet have lower labor productivity growth. This finding

is consistent with the view that hiring politicians helps firms block competition as opposed

to help them push the productivity and technology frontier. Our analysis also showed that

firms lower their innovation efforts and increase their political connections as they become

the market leader. At the more aggregate level, political connections tend to be associated

with worse industry dynamics.

A growing literature has argued that factor reallocation from low productivity incum-

bents to high productivity entrants is an important source of economic growth. Our results

suggest that political connections might be an important impediment to factor reallocation
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and productivity growth. While these connections might alleviate regulatory barriers or bu-

reaucratic burden, its detrimental impact on market competition and new firm entry might

reverse its static benefits. Future work should incorporate these opposing effects that have

been highlighted in our model and assess their quantitative importance on aggregate growth

and welfare.
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Appendix

A Data Construction

This section provides more details on the steps undertaken during the data construction.

Each subsection is an extension of a corresponding subsection in the main text.

A.1 Politicians Data (RLP and Elections Data)

A.1.1 Registry of Local Politicians (RLP)

The following are the steps undertaken to clean and utilize RLP data.

Step 1 . First, to link individual politicians to Social Security data on private-sector em-

ployees, we need to assign fiscal codes (similar to social security numbers in the U.S.) to

politicians. In Italy, assignment of fiscal code follows a specific rule that deterministically

assigns a fiscal code using individual’s demographic information, like name, surname, date of

birth, place of birth, gender. We develop an algorithm following this rule and use a detailed

demographic information from RLP to assign fiscal codes to each politician.

Step 3 . We determine whether a politician belongs to political majority or minority

using reported political affiliations in RLP. Data provides either party, list or a coalition to

which a politician is affiliated to. For example, a typical example of the variable would be

an entry ”A | B” meaning that politician belongs to a list/coalition of two parties A and B

participating in an election in that area. To define majorities, we first clean individual party

names and then define major parties at local level.

• Cleaning party names:
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First tedious task is to clean political party/coalition names in the data. Common

problem is misspellings and abbreviations of party names. Second problem is that

political parties sometimes change their names, merge, split, form coalitions, etc. We

tackle these problems by developing name cleaning algorithm that is based on infor-

mation from extensive online searches and manual checks.

More specifically, in the example above with the ”A | B” entry, we parse this entry into

two names, ”A” and ”B”, clean each of those names separately, and then combine those

names again. To clean names, we first compile a list of full names and abbreviations

of parties/coalitions at all levels municipality, province, regional or national from

Wikipedia. This represents a basic dictionary that helps to spot multiple forms of

the same name in the data. Next, we develop a name cleaning algorithm where we

standardize commonly used words and special characters, correct for word misspellings

and shortcuts. Using this name standardization and dictionary approach gets us a

long way in cleaning the data. Furthermore, we iteratively improve the algorithm by

manually verifying and updating special cases.

• Defining majority parties in RLP: Next, we define parties/coalitions that represent

majorities at the regional/province/municipality level in a given year. We define several

variants of majority party variable at the location-year level. First definition uses

political affiliation of a president/mayor. Second definition uses most frequent political

affiliation of all politicians found in RLP32.

32In effect, president’s/mayor’s elections determine party composition in the councils. Hence, to determine
a majority - party that has the largest representation, one needs to look at party affiliations of council
members. Councilmen represent majority of politicians in RLP. However, about 15% of politicians in RLP
are not elected. To define majorities, we could use both samples, however we prefer defining majority using
sample of councilmen only.
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Specifically, we define following variables at j-location and t-year level:

Main party (RLP )jt party (coalition) of a regional president/province president/mayor

in year t in a j region/province/municipality, respectively33.

#1 Party (RLP )jt most frequent party (coalition) affiliation of politicians in a re-

gion/province/municipality.

Since a winning candidate is generally also assured majority of seats, the first and

second definitions should be equivalent. However, there is one main reason for why

in many cases those definitions provide different information in RLP. Consider this

example. Suppose, a winning candidate belonged to a part ”B” and was supported by a

coalition consisting of parties ”A”, ”B”, and ”C”. In such a case, RLP could report the

candidates party affiliation as either ”A | B | C”, ”B”, or ”Z”, where ”Z” is a new name

of a coalition34. Often, the third variant appears. Similarly, other politicians may have

an affiliation reported in one of those ways (often, the second variant appears for an

ordinary council member). Hence, we make use of both variables – affiliation reported

by a president/mayor (Main party (RLP )jt) and most frequent affiliation reported by

all politicians (#1 Party (RLP )jt). Importantly, we will complement these definitions

with yet another information coming from the Elections data, which we discuss below.

Using this data on majority parties we can define whether individual belongs to ma-

jority or minority. We delegate its discussion after we describe the Elections data

below.

33If affiliation is missing (in less than 3% of cases), we use an affiliation of council president. If those are
still missing, we use affiliation of a vice-president/vice-mayor or a council vice-president.

34Often, for example, coalition may be listed as ”Centro Destra” (center-right), or ”Lista Civica” (civil
list), or using other official name of a coalition, like ”Polo per le Liberta” instead of listing its members
”Forza Italia”, ”Alleanza Nazionale” or others.
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Step 2 . We define following variables using information on education and position at-

tributes.

Position levelit categorical variable for whether a politician is a regional, province, or

municipality-level politician35.

Position rankit categorical variable for a position type (within a Position levelit).

Categories are: i) president/mayor; ii) vice-president/vice-mayor/president of a council/vice-

president of a council/secretary of a council ; iii) assessore (town councillor, and executive

position similar to local minister); iv) council member; v) questore/commissario (a super-

intendent or commissioner).

Educationi categorical variable for politician’s education. Categories are i) below high

school; ii) high-school or equivalent professional certification; iii) university degree; iv) post-

graduate degree.

Finally, we complement RLP data on local politicians with data on parties in the Italian

parliament from BPR (Bibliografia del Parlamento italiano e degli studi elettorali) and from

Wikipedia. We later use it to define top five parties at the national level each year, and to

determine a link of local politicians with national parties.

A.1.2 Elections Data

Defining majority parties in the Elections data:

For each election, we define coalitions as set of parties supporting same candidate (it may

be just one party or multiple). We define a coalition that gets most seats and a coalition

that supports a winning candidate (mayor or president). Because of the majority premium

35In few cases, when a politician has multiple observations in RLP at different position levels within a
year, we keep the observation with the highest position level in that year.
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described above, these two definitions should be equivalent. Indeed, definitions are the same

in all instances except for rare cases (<< 1%). Hence, we define a variable:

Main party (Elections)jt party/coalition that gets most seats in the election in re-

gion/province/municipality j at time t. It is equivalent to a party/coalition of a president,

president, or a mayor at regional, province, or municipality level, respectively.

A.1.3 Combining RLP and Elections Data

We used RLP and Elections Data to define several variables for majority/winning parties at

local level. We also identified marginal elections and parties/coalitions that have won/lost

on a small margin. Next, we combine these variables with the individual-level panel from

RLP36 and determine if a politician belongs to a majority/minority by various definitions at

a particular point in time.

There are two challenges when defining majority affiliations for individual politicians.

First challenge has been already mentioned in the part on Defining majority parties in

RLP. Because in RLP politicians may report an affiliation with just one party (in our previous

example, “B”), or a coalition (“A | B | C”), or a coalition name “Z”, there may be a noise in

defining majorities just based on this data. In those cases, when, for example, mayor reports

“Z”, we would not be able to classify politicians reporting “A”, “B” or “C” as belonging to

mayor’s coalition. Hence, it is very useful to complement this data with information from

the Elections data. Advantage of the Elections data is that we observe all party names (“A”,

“B”, and “C”) that form a coalition, and we also often observe an official coalition name

36Elections data is a panel with time gaps in between of elections. We impute most recent election outcomes
(up to 4 years) to fill in those time gaps.
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(“Z”), if any. Hence, when defining majority affiliation at the individual level, we compare

individual affiliation with both majority definitions from RLP and majority definition from

the Elections data. This gives us confidence that majority affiliations can be defined as clean

as possible. Extensive manual checks confirm that this definition significantly improves upon

the definition based on RLP only.

Second challenge concerns politicians at the municipality level. At the municipality

level, especially for small municipalities, many politicians are affiliated with local political

lists/coalitions (so called, civil lists, “lista civica”) that may combine various party members.

As an example, in an election held in the municipality of Cecima, there were two coalitions

“Lista Civica con Voi per Voi” and “Lista Civica per Cecima”, however both of them were

reported as “Lista Civica” for short. If then both of those lists got at least one seat after the

elections, it would not be possible to understand whether “Lista Civica” affiliation reported

in RLP is of a winning list or not. We call such cases (elections that have multiple lista

civica that got at least one seat in council) elections with ambiguous Lista Civica names.

Such cases are prevalent and represent half of the elections at municipality level. In these

ambiguous cases, if a winning party is Lista Civica and a politician reports Lista Civica,

we treat individual majority affiliation as missing. This results in more than 600K missing

values from up to 3 million observations at the municipality level. Though it is a significant

share of missing values, as we will see, we leverage on other position-type information (which

is never missing) to define additional measures of politicians influence.

Notice that same treatment applies when we identify if a politician belongs to a marginally

winning/losing party when elections are marginally contested. In half of the municipality-

level marginal elections we cannot identify winning and losing parties because both of them
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are Lista Civica, so we ignore those elections (and we label them below as marginal elections

with “no ID”).

A.2 Patent Data (PATSTAT)

First, we identify sample of EPO patents applied for by Italian firms. Focusing on the period

of 1990-2014, we identify 84,085 EPO patent applications filed by Italian companies. Some of

those applications represent variants of the same patent and belong to same patent families.

Hence, relevant count is a count of unique patent families. (In what follows, when it does

not incur ambiguity, we will refer to patent families as jus patents.) We have 71,240 EPO

patent families.

Second, we need to match patent records with our firm-level datasets. Unfortunately,

patent data does not provide firm fiscal codes which we could use to directly match PAT-

STAT records to Cerved data. Hence, we turn to company name cleaning routines to help

to standardize company names in PATSTAT and then match those names to fiscal codes.

We proceed in the following three steps. We start by using an extensive patent-firm fiscal

code match conducted by Unioncamere-Dintec. The name cleaning by Unioncamere is very

precise and it combined standard name cleaning routines with extensive manual checks to

maximize patent matches for the period of 2000-2016. We extend Unioncamere match back-

ward by applying a Unioncamere “dictionary” from 2000-2016 to 1990-1999. Combined, this

procedure results in up to 90% of patent matches. We further increase the matching rate

(especially for the 90’s) by using name cleaning routines from Lotti and Marin (2013) and

matched sample of patents from Thoma, et al. (2010). Final match results in 93% matching

rate of all EPO patents for the period of 1990-2014. We identify 13,904 companies who file



Appendix Table 1: Data on Local Politicians (RLP + Elections Data)

Variable Description Statistics

Person ID Individual fiscal code 2, 888, 480 obs; 515, 201 unique

Year 1993− 2014

Position level

Categorical variable for whether

politician is a regional, province,

or municipality-level politician.

Region 24, 439

Province 74, 821

Municipality 2, 789, 220

Position rank

Categorical variable for

a position rank

(within a position level)

President/Mayor 5.95%

Council president/

vice-mayor/president 5.35%

Executive councillor 19.60%

Council member 69.10%

Commissioner 0.01%

Education
Categorical variable for politician’s

education level

< high school 28.05%

∼ high school 44.15%

University 27.73%

Post-graduate 0.08%

Election dummy
Dummy if election is held

in that year × location
Mean= 0.24

Marginal election tag

Tag for whether election was

marginal, and if yes, whether party

affiliation of winner is not ambiguous

No 89.21%

Yes 5.94%

Yes, no ID 4.85%

Marginal election

winner

Categorical variable for whether

politician belongs to

winning/losing/other

party in marginal election

Winner 61.06%

Loser 18.60%

Other 20.34%

Dummy Majority party

Dummy for whether politician

belongs to the Top 1 majority

party

Mean= 0.73

Dummy Top 5

parliament parties

Dummy for whether politician

belongs to the Top 5

majority parties

from the parliament

Mean= 0.16

Notes: Table presents variable definitions and summary statistics for the panel data on individual politicians.

Data combines Registry of Local Politicians (RLP) – data on universe of local politicians in Italy, with the

Elections Data.
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for patents. To the best of our knowledge, this is by far the best match of Italian patent

records to Italian firms spanning the longest time period.

Third, for all patents, we extract information on their technology classification (IPC

international patent classification), application date, grant status, number of claims, and

backward and forward citations. To avoid double-counting, we focus on patent families.

Applicants may seek for protection for their inventions in multiple national offices resulting

in multiple applications that effectively represent same invention. We treat members of this

kind of patent family as one patent. We will refer to the earliest application date of family

members as a family’s application date.

Data allows us to construct various measures of firms’ patenting activity considering

different measures of patent qualities.

1. Clearly, whether patent is granted or not is one type of patent quality measure. Hence,

for each year, we construct a simple count of all patents and all granted patents of a

firm in a year.

2. Number of claims is another quality measure often used in the literature to proxy for

patent breadth (Lerner 1994; Lanjouw and Schankerman 2004). For each year, we

construct claims-weighted patent counts of a firm.

3. We also consider patent family size as another proxy for patent quality as it may

indicate extent of geographical protection applicant is seeking for. Hence, another

measure of firms inventive activity in a year is family-size-weighted patent counts in a

year.

4. Patent citations received have traditionally been used as measures of the economic
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and technological significance of a patent (see Pakes 1986; Schankerman and Pakes

1986; Trajtenberg 1990; Harhoff et al. 1999; Hall, Jaffe, and Trajtenberg 2001; Bessen

2008; Kogan et al. 2012; Moser, Ohmstedt, and Rhode 2015; Abrams, Akcigit, and

Popadak 2013). Our main measure of firm’s inventive activity is citations-weighted

patent counts. We consider different variations when constructing this measure. First,

citations received clearly suffer from truncation problem – the fact that latest patents

have less time to accumulate citations in the data. To reduce this problem, we also

consider 5-year citations measure number of citations received by patent within 5 years

from its application date. Second, our data allows us to see whether citation reported

in a patent application originated from the applicant or it was introduced during the

prior art search at the time of application, or it was introduced by an examiner. In

the data, about third of citations made originate from applicants. Since this may be

a closer proxy for the impact of a patent, we also consider citations measure that just

counts citations made by applicants. In all these cases, we construct family-to-family

citations and for this exercise we make use of the full (not just Italian) EPO citations

data.

Appendix Table A.2 presents correlation matrix for different quality measures defined at

patent level. Though all measures are positively correlated, in many cases correlation is not

very strong, indicating that these measures entail information on different aspects of patent

quality. We also show summary statistics of those measures in Appendix Table 2.
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Appendix Table 2: Summary Statistics for Italian Patents (1990-2014)

Variable Average

Patent family size 5.43

Grant dummy 0.54

Number of claims 10.43

Citations received 4.94

Citations received in 5 yrs 2.00

Applicant citations 1.71

Applicant citations in 5 yrs 0.63

Notes: Table provides summary statistics for the universe of EPO patents applied by Italian firms in the

1990-2014 time period. Observation is a patent family – one or more patent applications that are variants

of the same patent. Sample contains 66,176 patent families.

Appendix Table 3: Cross-correlations of Various Patent Quality Measures

Variables Grant Fam. size Claims Cits 5-yr cits Cits, applicant

Grant 1.000

Fam. size 0.410 1.000

Claims 0.313 0.106 1.000

Cits 0.207 0.362 0.163 1.000

5-yr cits 0.151 0.293 0.154 0.750 1.000

Cits, applicant 0.144 0.305 0.121 0.878 0.593 1.000

5-yr cits, applicant 0.097 0.251 0.122 0.592 0.813 0.637

Notes: Table presents correlation matrix of different measures of patent qualities. Grant- dummy for whether

patent has been granted; Fam. size – number of different patent applications within one patent family ID;

Claims – number of patent claims; Cits – number of citations received; 5-yr cits – number of citations received
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within 5 years from application date; Cits, applicant – number of citations received excluding non-applicant

citations (made by examiners or else); 5-yr cits, applicant – number of applicant-citations received within 5

years from application date.

A.3 Social Security Data (INPS)

To construct yearly firm employment, we count number of workers present in a firm in

March37. We define employment growth at time t as employment growth to the next period,

so

git =
Lit+1 − Lit

Lit

where, git stands for growth rate and Lit for employment.

Alternative measure for growth rate often used in the literature is a measure by Davis,

Haltiwanger and Schuh (1996), henceforth DHS, which is bounded between -2 and 2 and

reduces impact of outliers. We denote this growth rate by gDHSit and it is defined as:

gDHSit = 2
Lit+1 − Lit
Lit+1 + Lit

(2)

We calculate weekly gross labor income (including bonuses and overtime) as total yearly

labor income divided by number of weeks worked. At the firm level, Pay per worker, refers

to average weekly pay (in 1000 of 2014 Euros) of workers present in March.

37This is consistent with data construction by Haltiwanger (2013) using the U.S. Census data. Alterna-
tively, one can look at average yearly employment, but the measures are very similar.
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A.4 Matched Dataset (Politicians Data + INPS + Cerved + PAT-

STAT)

A.4.1 Matching INPS with Politicians Data (RLP + Elections)

We merge Politicians Data with INPS worker records using individual fiscal codes and years.

This allows us to identify those local politicians that are employed in private firms while

holding office. Appendix Table 4 shows summary statistics for the matched politicians-

workers sample. It is similar to Table 1 but on a sample of moonlighting politicians. By

comparing two tables, we see that among all local politicians about third has ever taken a

private job while in office. Clearly, overwhelming majority of connections are through politi-

cians at the municipality level. This is both because majority of politicians are municipality

politicians and because proportionally municipality-level politicians work in private sector

more than other politicians. In terms of education, worker-politicians on average have lower

education (relatively more high-school graduates than university graduates relative to the

whole sample). Share of politicians belonging to majority (by various definitions) is slightly

higher among worker-politicians. In addition, by comparing to other workers, politicians are

employed more on white-collar jobs and have significantly higher wages (about 40% higher).

A.4.2 Matching INPS with Firm-level Data (Cerved + PATSTAT)

We match INPS with Cerved using firm identifiers. Many observations in INPS data do not

match to Cerved as can be seen from Table 5 – these are mainly small or short-lived firms not

filing balance sheet information, sole-proprietorships or household producers. On the other

hand, for about 16% of observations from Cerved, firm fiscal codes were not possible to match

to INPS. This means those firms did not make any INPS social security contributions for
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their workers, they could be employing only contractors or workers in agriculture. Finally,

we merge this data with firms’ patenting information using data described in Section 3.3.

Only about 4% of patents did not get matched with INPS firms. In the data, over 11K firms

patent at least once.

Descriptive statistics for the final matched dataset are provided in Tables 5.
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Appendix Table 4: Descriptive Statistics for Politicians Matched to Firms

Variable Statistics

Person ID 825, 111obs; 162, 417 unique

Year 1993− 2014

Position level

Region 3, 301

Province 17, 425

Municipality 804, 385

Position type

President/Mayor 4.26%

Council presid./

∼ vice 4.37%

Assessore 17.79%

Council member 73.58%

Questore/

Commisario 0.00%

Education

< high school 28.57%

∼ high school 53.09%

University 18.29%

Post-graduate 0.05%

Dummy main party Mean= 0.69

Dummy Top 1 party Mean= 0.77

Dummy Top1-2 parties Mean= 0.91

Dummy Top 5

parliament parties Mean= 0.15

Dummy for white collar Mean= 0.58

Average weekly pay Mean= 545

Notes: Summary statistics for the sample of politicians who work in private sector while holding office. The
table is similar to Table 1 but on a sample of politicians who match to INPS.
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Appendix Table 5: Summary of the Matched Data

Sample A

(full sample)

Sample B

(& nonzero empl)

Sample C

(& balance sheet data)

Years 1993-2014 1993-2014 1993-2014

Observations 32,776,800 27,982,454 7,371,357

Distinct firms 4,457,672 3,939,897 1,028,063

Share of total employment

(comparing to 2011 Census)
1.10 1.10 0.73

Average firm size 7.22 8.46 19.81

Years per firm in sample 7.35 7.10 7.17

Number of distinct firms connected

(= ever connected)
118,445 112,333 64,612

Number of firms × year connected 469,263 449,236 270,843

Number of firms × year connected

by a regional politician 2,568 2,496 914

Number of firms × year connected

by a regional politician 13,122 12,703 6,070

Number of firms × year connected

w president/mayor/∼vice 52,181 50,224 27,488

Number of firms × year connected

w president/mayor/∼vice/assessore 141,976 136,654 81,165

Number of firms × year connected

w pres/mayor-party politician 258,856 248,601 148,759

Number of firms × year connected

w majority-level politician 285,337 273,821 164,877

Number of firms × year connected

w top 5 parliament-party politician 80,109 77,206 45,492

Notes: Table reports summary of the matched INPS data at the firm level. The first column provides

statistics for the full sample of INPS firms. The second column limits observations to firms with positive

employment in a year. The third column considers matched INPS-Cerved sample.
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Appendix Table 6: Politicians’ Within-Firm Wage Premium

Municipality level politicians Province level politicians

Female Male Female Male

Blue-collar 1.04 1.07 1.15 1.03

White-collar 1.09 1.07 1.17 1.16

Regional level politicians High-rank politicians

Female Male Female Male

Blue-collar . . 1.06 1.07

White-collar 1.46 2.00 1.23 1.15

Notes: Table shows politicians’ within-firm wage premium by type of job and gender. Premium in each cell

is defined as average wage paid to politicians divided by average wage paid to non-politicians within same

firm conditional on same type of job and gender. Four different panels present wage premia calculated for

politicians at the municipality level, province level, regional level and high-rank politicians, respectively.

Cells are empty if number of observations in that cell are less than 100.
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B Empirical Results

Figure 14: Bureaucracy and Connections across Industries

(a) Bureaucracy, index 1, and high-rank connections
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(b) Bureaucracy, index 2, and high-rank connections
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Notes: Binscatter plots (split into 20 quantiles) and linear fits between bureaucracy indices and share of

connected firms across 52 industries. Sector-level bureaucracy index 1(2) is defined as share of newspaper

articles about a sector from Factiva News search that have government regulation or bureacracy-related

words as listed in the List 1(2) in the main text. Panel (a) uses index 1, while panel (b) uses index 2. Y axis

is share of firms connected with high-rank politicians across industries.
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Figure 15: Connections over Market Share

(a) Politicians per 100 w/c workers
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(b) Politicians per 100 w/c workers, control for logL
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(c) High-rank Politicians per 100 w/c workers
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(d) High-rank Politicians per 100 w/c workers, control for logL
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Notes: Each outcome variable at the firm level is regressed on log market share controlling for industry, year,
and region fixed effects and also for log size in Panels (b) and (d). Market is defined at (6-digit) industry
× region × year level. Each dot represents the adjusted outcome variable, namely the outcome from which
we subtract all covariates (except log market share) times their estimated coefficients. Regression lines are
depicted in each panel. X-axis is divided into 20 equally sized bins and each dot represents average value
within that bin. In Panels (a) and (b), the outcome is politicians per 100 white-collar workers. In Panels
(c) and (d), the outcome is high-rank politicians per 100 white-collar workers.
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Figure 16: Composition of Connections over Market Share

(a) Composition of connections
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(b) Composition of connections, control for logL
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Notes: Share of high-rank connections among all connections at the firm level is regressed on log market

share controlling for industry, year, and region fixed effects and also for log size in Panel (b). Market is

defined at (6-digit) industry × region × year level. Each dot represents the adjusted outcome variable,

namely the outcome from which we subtract all covariates (except log market share) times their estimated

coefficients. Regression lines are depicted in each panel. X-axis is divided into 20 equally sized bins and each

dot represents average value within that bin.
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Appendix Table 7: Cox Survival Analysis

(1) (2)

t t

Connection -0.083∗∗∗ -0.074∗∗∗

(-9.94) (-8.88)

Connection high -0.180∗∗∗ -0.168∗∗∗

(-6.24) (-5.80)

Log Size -0.383∗∗∗ -0.381∗∗∗

(-471.25) (-463.87)

Market share -2.744∗∗∗

(-21.14)

Year FE YES YES

Observations 34914391 34912916

Notes: Cox proportional hazard model of firm survival as a function of connection status. Connection –
dummy equal to one if a firm is hiring a politician within a year, Connection high – dummy equal to one if
a firm is hiring a high-rank politician within a year. Other controls are Log Size, Market Share defined as
share of firm’s employment in industry × region × year, and year dummies. Sample is the universe of firms
in the period of 1985-2014. Efron method for tied failures is used. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01
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Figure 17: Innovation Quality over Market Leadership

(a) Patent Citations per 100 workers
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(b) Patent Family Size per 100 workers
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Notes: Figure plots average outcome variable over firms’ size rank for top 30 firms in the markets. Market

is defined at (6-digit) industry × region × year level. Markets in which top 1 firm holds less than 10%

share are dropped. Outcome variables are demeaned with industry, year and region fixed effects. In Panel

(c) the outcome is patent family size-adjusted patent counts per 100 workers. Panel (d) considers citations-

adjusted patent counts per 100 workers. Market leaders produce lower-quality innovation compared to their

competitors.
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Figure 18: Innovation over Market Share

(a) Labor Productivity
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(b) Labor Productivity, control for logL
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(c) Intangibles Share in Value Added
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(d) Intangibles Share in Value Added, control for logL

.3
6

.3
8

.4
.4

2
.4

4
in

ta
ng

_V
A

_a
dj

-10 -8 -6 -4 -2 0
logms_L

Notes: Each outcome variable at the firm level is regressed on log market share controlling for industry, year,

and region fixed effects and also for log size in Panels (b) and (d). Market is defined at (6-digit) industry

× region × year level. Each dot represents the adjusted outcome variable, namely the outcome from which

we subtract all covariates (except log market share) times their estimated coefficients. Regression lines are

depicted in each panel. X-axis is divided into 20 equally sized bins and each dot represents average value

within that bin. In Panels (a) and (b), the outcome is labor productivity (value added per labor). In Panels

(c) and (d), the outcome is intangible assets over value added.
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Figure 19: Innovation over Market Share

(a) Patents Per Labor
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(b) Patents per Labor, control for logL
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(c) Family size-adjusted Patents Per Labor
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(d) Family size-adjusted Patents per Labor, control for logL
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Notes: Each outcome variable at the firm level is regressed on log market share controlling for industry, year,

and region fixed effects and also for log size in Panels (b) and (d). Market is defined at (6-digit) industry

× region × year level. Each dot represents the adjusted outcome variable, namely the outcome from which

we subtract all covariates (except log market share) times their estimated coefficients. Regression lines are

depicted in each panel. X-axis is divided into 20 equally sized bins and each dot represents average value

within that bin. In Panels (a) and (b), the outcome is patent counts per labor. In Panels (c) and (d), the

outcome is patent family size-adjusted patent counts per labor.
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Appendix Table 8: Connections and Firm Growth

(1) (2) (3) (4)

Empl growth Empl growth VA growth VA growth

Connection 0.034∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.015∗∗∗

(38.75) (34.80) (37.21) (9.51)

Connection high -0.005∗∗ 0.011∗∗∗ 0.011∗∗∗ -0.005

(-2.32) (3.32) (3.41) (-1.04)

Log Assets 0.065∗∗∗ 0.203∗∗∗ 0.036∗∗∗ -0.091∗∗∗

(267.17) (268.76) (118.76) (-89.75)

Log Size -0.077∗∗∗ -0.384∗∗∗ -0.080∗∗∗ -0.235∗∗∗

(-256.13) (-490.40) (-217.54) (-251.15)

Age -0.002∗∗∗ -0.011∗∗∗ -0.004∗∗∗ -0.005∗∗∗

(-89.31) (-142.03) (-145.69) (-44.33)

Year FE YES YES YES YES

Region FE YES NO YES NO

Industry FE YES NO YES NO

Firm FE NO YES NO YES

Observations 6545131 6585740 5684519 5710338

Notes: Firm-level OLS regressions. Dependent variable is columns 1 and 2 is employment growth from time

t to time t + 1 as defined in equation 2. Dependent variable is columns 3 and 4 is value added growth from

time t to time t + 1. Main variables of interest are Connection – a dummy variable equal to one if firm is

connected with a politician, and Connection high – a dummy equal to one if a firm is connected with a high-

rank politician at time t. Regressions in addition control for firm’s assets, size, age, as well as year, region

and industry fixed effects in columns 1 and 3; and for year dummies and firm fixed effects in columns 2 and

4. Robust standard errors clustered at firm level reported in parentheses. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Appendix Table 9: Connections and Firm Productivity Growth

(1) (2) (3) (4)

LP growth LP growth TFP growth TFP growth

Connection -0.015∗∗∗ -0.030∗∗∗ -0.009∗∗∗ -0.020∗∗∗

(-12.14) (-16.91) (-8.68) (-14.48)

Connection high 0.005 -0.011∗ 0.004 -0.008

(1.49) (-2.24) (1.38) (-1.90)

Log Assets -0.028∗∗∗ -0.274∗∗∗ -0.001∗∗∗ -0.106∗∗∗

(-83.24) (-236.12) (-4.87) (-116.33)

Log Size 0.021∗∗∗ 0.274∗∗∗ -0.006∗∗∗ 0.125∗∗∗

(55.70) (255.01) (-18.21) (145.41)

Age -0.001∗∗∗ -0.002∗∗∗ -0.001∗∗∗ -0.003∗∗∗

(-47.83) (-17.47) (-46.37) (-31.56)

Year FE YES YES YES YES

Region FE YES NO YES NO

Industry FE YES NO YES NO

Firm FE NO YES NO YES

Observations 5598367 5623077 5271002 5291979

Notes: Firm-level OLS regressions. Dependent variable in columns 1 and 2 is labor productivity (value

added per labor) growth from time t to time t + 1. Dependent variable in columns 3 and 4 is TFP growth

from time t to time t + 1. TFP is calculated using Cobb-Douglas specification where capital is measured

as total assets, labor is given by employment level from INPS and labor share is taken equal to average

industry-level labor share from the data. Main variables of interest are Connection – a dummy variable

equal to one if firm is connected with a politician, and Connection high – a dummy equal to one if a firm

is connected with a high-rank politician at time t. Regressions in addition control for firm’s assets, size,

age, as well as year, region and industry fixed effects in columns 1 and 3; and for year dummies and firm

fixed effects in columns 2 and 4. Robust standard errors clustered at firm level reported in parentheses.
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Figure 20: Marginal Election Counts by Provinces
(municipality & province elections)

(a) 2% victory margin
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(b) 5% victory margin
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Marginal Elections 

Notes: Panel (a) plots number of municipality and province-level marginal elections decided within a 2%

victory margin by provinces. Each circle depicts location of the main city in a province and number of total

marginal elections in 1993-2014 in a corresponding province in that circle. Panel (b) plot is similar but

counts marginal elections within a wider 5% victory margin. Victory margin is defined as difference between

share of votes of a winning candidate and share of votes of the closest competitor.
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Figure 21: Distribution of Share of Marginal Winners across Firms
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Notes: Sample consists of firms that have at least one politician from a marginally winning or losing party in

elections within 10% victory margin. We compute share of marginal winners of a firm as a ratio of number

of politicians from a marginally winning party divided by number of politicians from a marginally winning

or losing party. The figure plots a distribution of share of marginal winners across firms. We see that firms

usually “bet” on one side of an election and share of firms hiring politicians from competing parties is very

low.
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Figure 22: Connections and Industry Entry Conditional on Size of Top firms

(a) Entry Rate and Connections
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(b) Share of Connected Entrants
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Notes: Each outcome variable at the industry × region × year level is regressed on share of connected

firms controlling for average size of top 5 firms, industry, year, and region fixed effects. Each dot represents

the adjusted outcome variable, namely the outcome from which we subtract all covariates (except share of

connected firms) times their estimated coefficients. Regression lines are depicted in each panel. X axis is

divided into 20 equally sized bins and each dot represents average value within that bin. In Panel (a), the

outcome is entry rate of new firms. Panel (b) considers share of connected entrants.
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Figure 23: Connections and Industry’s Share of Young Firms

(a) Share of Young Firms and Connections
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(b) Share of Young Firms and Connections, conditional on size
of top firms
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Notes: Each outcome variable at the industry × region × year level is regressed on share of connected firms

controlling for industry, year, and region fixed effects and average size of top 5 firm for Panel (b) . Each dot

represents the adjusted outcome variable, namely the outcome from which we subtract all covariates (except

share of connected firms) times their estimated coefficients. Regression lines are depicted in each panel. X

axis is divided into 20 equally sized bins and each dot represents average value within that bin. In both

panels the outcome is share of firms that are younger than 5 years.
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Figure 24: High-Rank Connections and Industry Performance

(a) Employment Growth and High-Rank Connections

.0
2

.0
4

.0
6

.0
8

.1
E

m
pl

oy
m

en
t g

ro
w

th

0 .1 .2 .3
Share of high-connected firms

(b) Productivity and High-Rank Connections
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Notes: Each outcome variable at the industry × region × year level is regressed on share of connected firms

with high-rank politicians controlling for industry, year, and region fixed effects. Each dot represents the

adjusted outcome variable, namely the outcome from which we subtract all fixed effects times their estimated

coefficients. Regression lines are depicted in each panel. X axis is divided into 20 equally sized bins and each

dot represents average value within that bin. In Panel (a), the outcome is average employment growth rate.

Panel (b) considers average log labor productivity.
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