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Abstract 

    Given the significant threats against coral reef ecosystems, there is an 

urgent need to develop the capacity to make predictions as to which coral 

reefs are most stress-susceptible, as well as which and are most resilient. 

However, there is such extensive variation in coral physiology, even in 

conspecifics reared in the same laboratory tank, that prior works have been 

characterized by too low statistical power to even explain previously obtained 

datasets with confidence, let alone predict the behavior of to-be-sampled 

corals. To obtain a better grasp of the environmental and organismal factors 

that contribute to variation in coral physiology, a published coral reef dataset 

from Fiji’s remote, understudied Lau Archipelago was re-analyzed herein with 

a variety of both univariate and multivariate statistical approaches. Of the 12 

environmental parameters hypothesized to influence reef coral physiology, 

only two both significantly drove variation in the multivariate coral 

physiological response and featured readily in the best-fit models produced by 

stepwise regression and partial least squares analyses: island and host coral 
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Abbreviations. Please see Table 3 for target gene abbreviations.  

Akaike’s information criterion=AICc Multivariate ANOVA=MANOVA 

Austral Islands+Cooks Islands=Australs-Cooks or A-C Multivariate statistical approaches=MSA 

Average live coral cover=ALCC Not applicable=NA 

Analysis of variance=ANOVA Not statistically significant=NS 

Bayesian information criterion=BIC Ocean acidification=OA 

Canonical correlation analysis=CCA Partial least squares=PLS 

Carbon dioxide partial pressure=pCO2 Permutational ANOVA=PERMANOVA 

Discriminant analysis=DA Photosynthetically active radiation=PAR 

Distance-based linear modeling=DistLM Predicted residual sum of squares=PRESS 

Environmental parameter=EP Principal components analysis=PCA 

Euclidean distance matrix=EDM Principal components analysis primary 

axis loading score=PC axis 1 or PC1 

Genome copy proportion=GCP Principal coordinates ordination=PCO 

Global climate change=GCC Response variable=RV 

Global Reef Expedition=GRE Ribulose-1,5-bisphosphate carboxylase/ 

oxygenase (large subunit)=RuBisCO 

Green fluorescent protein=GFP Standard deviation=std. dev. 

Heat map score=HMS Stepwise regression=SR 

Living Oceans Foundation=LOF Stress-targeted gene=STG 

Mahalanobis distance=MD Symbiodinium=Sym 

Maximum length=max. length Temperature=temp. 

Mitochondrial open reading frame=mORF Trans-generational=trans-gen 

Molecular-physiological response variable=MPRV Variability index=VI 

Multi-dimensional scaling=MDS Variable importance parameter=VIP 

species. That being said, the majority of the models were characterized by low 

predictive capacity; more data are clearly needed to generate statistical 

algorithms capable of forecasting coral behavior with confidence in this era of 

rapidly changing global climate.  

 

Keywords: biomarkers; coral reefs; dinoflagellates; invertebrate physiology; 

molecular biology; multivariate statistics; predictive modeling; South Pacific 
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Introduction 

    As global temperatures continue to 

rise, Earth’s coral reefs are becoming ever 

more imperiled (Hoegh-Guldberg et al., 

2007; Mayfield & Gates, 2007; Hughes et 

al., 2018); there is consequently an urgent 

need to make data-driven predictions 

regarding coral health. Upon having 

carried out a plethora of laboratory studies 

on the responses of two model 

Indo-Pacific reef coral species (Table 1), 

Seriatopora hystrix (e.g., Mayfield et al., 

2011) and Pocillopora damicornis (likely 

to have actually been P. acuta in the 

majority of these studies; e.g., Mayfield et 

al., 2013a-b, d), we are now beginning to 

develop an understanding of the responses 

of reef-building scleractinians, which 

associate with photosynthetically active 

dinoflagellates of the genus Symbiodinium 

(Mayfield et al., 2014c), to global climate 

change (GCC) scenarios.  

    From Table 1, it is clear that ocean 

acidification (OA) is not a major threat to 

stony corals of Taiwan’s Hengchun 

Peninsula. However, prolonged exposure 

to temperatures above 31°C can elicit 

bleaching (Mayfield et al., 2013a), as has 

been documented in countless other 

locations across the planet (e.g., Lesser, 

1997; Putnam et al., 2017; Sheppard et al., 

2017). Some corals, however, do resist 

bleaching and instead acclimate to 

temperatures that lead to thermal stress in 

corals elsewhere (Barshis et al., 2013; 

Krueger et al. 2017). We do not yet 

possess a clear understanding of the 

cellular biology underlying the marked 

capacity of acclimation of some corals. 

One reason for this knowledge dearth is 

because the majority of works on the 

cellular and molecular mechanisms of 

coral acclimation to environmental change 

have focused on gene expression (e.g., 

Kenkel et al., 2011, Kenkel & Matz, 

2016); however, as there is no correlation 

between gene expression and protein 

concentration in reef-building corals or 

Symbiodinium (Mayfield et al., 2016b-c, 

2018a-b), mRNA data cannot be used to 

model or infer protein behavior in coral 

cells. Doing just this is, unfortunately, still 

common practice in marine biology, and 

particularly in reef coral biology (e.g., 

Palumbi et al., 2014). This means that the 

vast majority of the reef 

coral-Symbiodinium mRNA data gathered 

are of little utility in explaining coral cell 

biology. 

    Despite the fact that we, as a field, do 

not yet have a comprehensive handle on 

the molecular basis of coral acclimation to, 

for instance, high temperatures, it is 

nevertheless possible that we can exploit 

the molecular- and physiological-scale 

data acquired from past controlled tank 

experiments to make predictions about  
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Table 1. Global climate change manipulation studies carried out at Taiwan’s National Museum of Marine Biology and Aquarium. 

Please note that, in most cases, Pocillopora acuta was inadvertently classified as P. damicornis in the published manuscripts. In 

certain experiments, more than just the two target model species (Seriatopora hystrix and P. acuta) listed in the table were used in 

experiments (e.g., Acropora nana and Porites lutea in McRae, Mayfield et al., in prep.). Table abbreviations: NA=not applicable. 

ppm=parts per million (μatm). Temp.=temperature. Trans-gen=trans-generational (adults=>larvae=>recruits).  

 
Target 

species 

Life 

history 

stage 

Temp. treatment High pCO2 

(ppm) 

Salinity 

effects 

tested? 

Light 

effects 

tested? 

Nutrient 

effects 

tested? 

Time-scale Acclimation? Reference(s) 

S. hystrix adult 27 vs. 30°C NA no no no hours yes Mayfield et al., 2011, 2014b 

S. hystrix adult 26 vs. 23-29°C 

over 6-hr 

NA no no no days yes Mayfield et al., 2012a, 2013c, 2014b, 

2016c, 2018a 

P. acuta adult NA NA no yes no hours yes Mayfield et al., 2010, 2012b 

P. acuta adult NA NA yes no no hours yes Mayfield et al., 2013d 

P. acuta larvae 26 vs. 29°C 415 vs. 635 no no no days yes Putnam et al., 2013 

P. acuta adult 26 vs. 29°C 415 vs. 850 no no no weeks yes Putnam, Mayfield et al., in prep. 

P. acuta adult 26.5 vs. 29.7°C NA no no no months yes Mayfield et al., 2013b, 2014d, 2018b 

P. acuta adult 31.5°C-return to 

ambient at night 

NA no no no weeks yes Mayfield et al., 2013a 

P. acuta adult 31.5°C-sustained NA no no no weeks no-bleached Mayfield et al., 2013a, 2014a 

P. acuta adult 25°C 400 vs. 800 no no no months yes Liu, Mayfield et al., in review. 

S. hystrix adult 25°C 400 vs. 800 no no no months yes Liu, Mayfield et al., in prep. 

P. acuta adult 25, 28, or 31°C 400 vs. 800 no no yes months yes Liu, Mayfield et al., in prep. 

P. acuta adult 26 vs. 29.5°C NA no no no months yes McRae, Mayfield et al., in prep. 

P. acuta adult 26 vs. 32°C NA no no no hours yes McRae, Mayfield et al., in prep. 

P. acuta trans-gen 26 vs. 29.5°C NA no no no months yes McRae, Mayfield et al., in prep. 
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coral behavior in situ. Indeed, in most 

cases, aquarium experiments are 

undertaken with the explicitly expressed 

purpose of gaining a better understanding 

of how marine animals will fair in the 

oceans, yet explanatory data acquired 

during such laboratory experiments are 

rarely used in a predictive setting. This 

may be due to the fact our collective 

ability to explain previously documented 

observations or datasets is not necessarily 

associated with a commensurate ability to 

predict behavior (Shmueli, 2011). As an 

example, we have billions of data on the 

United States stock market and can 

adeptly explain past market phenomena; 

however, such explanatory data are of 

little use in predicting future market 

behavior, and technical analysis 

consistently underperforms the act of 

selecting stocks at random in building an 

ideal portfolio. Of course, there are 

plentiful examples of when congruency 

does exist between explanation and 

prediction; international websites such as 

Google, Facebook, and Amazon have 

acquired massive datasets on consumer 

behavior and have used these data to 

successfully predict, at least in the case of 

Amazon, what consumers may desire to 

buy in the future.  

    It is currently unclear whether our 

ability to explain coral behavior in the 

laboratory or in the ocean (i.e., from 

previously acquired field datasets) is 

associated with a commensurate capacity 

to predict the phenotypes or physiologies 

of corals in other environments. If we 

could use data from laboratory exposures 

(sensu Table 1) and/or published field 

datasets (e.g., Mayfield et al., 2015) on 

reef coral physiology to make predictions 

of how conspecifics would respond to 

environmental heterogeneity in other 

locations (or in the same study locations 

at later dates), then we would likewise 

possess the capacity to determine which 

reefs (and/or coral colonies/populations) 

are most likely to persist in the face of 

GCC. The statistical package JMP®  

(version 14; Cary, NC, USA; 

www.jmp.com) features a plethora of 

modeling programs for testing the ability 

of hitherto obtained datasets to predict 

future organismal responses. Among the 

approaches at our disposal as statisticians 

is partial least squares (PLS), which is 

typically used in cases, such as all coral 

molecularly-focused datasets, in which 

many response variables co-vary (Chen et 

al., 2015).  

    Not only could PLS be used to 

develop predictive models for coral 

behavior, but it could also be used in 

conjunction with other approaches (e.g., 

stepwise regression [SR] and principal 

components analysis [PCA]) to determine 

the environmental parameters (EP), or 
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combinations thereof, that best account 

for spatio-temporal variation in coral 

physiology. This would address the 

additional need of uncovering just why 

coral physiology varies so substantially 

(Louis et al., 2017; Parkinson et al., 2018), 

even across colonies of the same source 

population exposed to very similar 

environmental conditions (Mayfield, 

2016); indeed, this issue has thwarted 

progress in the field due to the low 

statistical power of the data from the 

associated experiments and/or field 

datasets (Mayfield et al., 2009). Therefore, 

to both 1) attempt to develop predictive 

models for gauging future coral 

performance in situ and 2) uncover the EP 

that most drive variation in coral 

physiology, a published dataset from Fiji’s 

Lau Archipelago (Mayfield et al., 2017b), 

which was acquired during the Khaled bin 

Sultan Living Oceans Foundation’s (LOF) 

“Global Reef Expedition” (GRE; the 

largest coral reef survey ever undertaken; 

see Mayfield et al., 2017a for details.), 

was re-explored with a variety of a 

univariate and multivariate statistical 

approaches (MSA). Based on our prior 

work in the Austral and Cook Islands 

(Mayfield et al., 2016a), we hypothesized 

that host species would contribute 

significantly to physiological variation in 

the colonies sampled across this remote, 

understudied, South Pacific frontier 

province (Fig. 1).  

 

Materials and Methods 

 

    Description of the dataset. Details 

of the June, 2013 research expedition to 

Fiji’s Lau Archipelago can be found in 

Mayfield et al. (2017b), and the target 

coral was the model reef coral P. 

damicornis (Traylor-Knowles et al., 2011). 

Although comprehensive coral reef 

assessments had never before been 

undertaken in the Lau group at the time of 

surveying, readers interested in the 

geology and archaeology of this 

understudied South Pacific region, as well 

as a treatise on human-ocean interactions, 

should consult Jones (2009). In total, 70 

reef sites were surveyed, and pocilloporid 

corals were sampled from 47. Of the 153 

sampled colonies, 91 were genotyped 

(Mayfield et al., 2017b), and 90 (from 34 

sites) were analyzed for the molecular- 

physiological response variables (MPRV) 

discussed below (all but 5 of these 90 

were genotyped.). A variety of EP (Table 

2) were assessed at each of the reefs 

surveyed to attempt to uncover which 

factors are most important in driving 

physiological differences between coral 

colonies, and the data for several such 

continuous EP (namely temperature, 

salinity, and average live coral cover 

[ALCC]) have been plotted in Fig. 1. As 
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outlined in Table 2, only 12 of the 15 EP 

assessed were generally considered in the 

MSA discussed below; reasons for the 

exclusion of the other 3 can be found in 

Table 2. Likewise, of the 13 response 

variables (RV) assessed in each of the 153 

sampled colonies, only 11 were included 

in the MSA herein; reasons for exclusion 

of the remaining 2 can be found in Table 3, 

and the spatial distribution of the data for 

the 11 MPRV (as well as maximum [max.] 

colony length), can be found in Fig. 2.  

    Since most MSA are highly sensitive 

to missing data, only those 70 coral 

samples for which no data were missing 

were included in the statistical analyses 

outlined below. Although the target 

species was P. damicornis, P. acuta was 

synonymized with P. damicornis at the 

time of surveying; the two species were 

not formally distinguished until the 

publication of Schmidt-Roach et al. 

(2014). Likewise, although most sampled 

colonies appeared as P. damicornis in situ, 

such was not always confirmed upon 

genotyping (Mayfield et al., 2017b), and, 

of this 70-sample subset, 1, 18, 6, 26, and 

19 were P. brevicornis (1.5%), P. 

verrucosa (26%), P. meandrina (8.5%), P. 

acuta (37%), and P. damicornis (27%), 

respectively. For this reason, and because 

we hypothesized that physiological 

differences may exist between these 

closely related species, “host 

species/genotype” was included as an EP 

(Table 2). Since only one P. brevicornis 

was genotyped, it was excluded from the 

analysis; the resulting final sample size 

was 69.  

 

    Data analysis overview. In addition 

to providing baseline data for an 

under-surveyed region of the South 

Pacific, we were interested in identifying 

the EP (Table 2) that are most important in 

driving variation in the physiological 

response (Table 3) of pocilloporid corals, 

and a variety of both univariate and 

multivariate statistical approaches were 

employed to achieve this goal. For all 

MSA, RV data were standardized (i.e., 

converted to z-scores) prior to analysis 

such that all would be on the same scale. 

Multivariate ANOVA (MANOVA) and 

ANOVA were initially used to analyze the 

data (Mayfield et al., 2017b), though they 

were ultimately found to be inappropriate 

methods for testing effects of environment 

on coral physiology with this dataset due 

to, amongst other issues, the 

heteroskedastic, non-normally distributed 

nature of the underlying data. 
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Table 2. Environmental parameters (EP) assessed at each survey site. In total 12 of the 15 EP were incorporated into the statistical models 

discussed in the text, and the text colors associated with these 12 EP are used throughout the manuscript’s tables and figures (though see 

exceptions in Figs. 4-5.). Site, sampling date, and Symbiodinium assemblage were originally hypothesized to be EP that could affect coral 

physiology, but there were typically too few corals sampled from any one site, or on the same day, to include the former two, and nearly all 

sampled colonies hosted Symbiodinium of clade C exclusively; these three EP were consequently excluded from statistical analyses. Nearly all 

sites were virtually devoid of sea cucumbers, which had been harvested to near-local extinction by Chinese fishing vessels (see LOF field report 

for details: https://www.livingoceansfoundation.org/global-reef-expedition/pacific-ocean/fiji-islands/new-report-on-fijis-reefs/). Table 

abbreviations: ALCC=average live coral cover. NA=not applicable. PAR=photosynthetically active radiation. STG=stress-targeted gene. 

Temp.=temperature.  

 
EP  #bins/categories  Hypothesis 

1. Island 9 islands: Totoya, Matuku, Moala, Fulaga, Kabara, Tuvuca, Cicia, 

        Mago, Vanua Balavu 

Significant effect of island
a
 

2. Reef exposure 3 categories: protected, intermediate, or exposed Significant effect of exposure
a
 

3. Reef type 4 types: barrier reef, fringing reef, patch reef, or pinnacles Significant effect of reef type
a
  

4. Reef zone 2 zones: forereef vs. lagoon Significant effect of reef zone
a
  

5. ALCC (%) 5 bins: 10-20, 20-30, 30-40, 40-50, or >50% Significant effect of ALCC
a
 

6. Temp. (°C) 2 bins: 26-27 or 27-28°C Significant effect of temp.
b 

 

7. Salinity (unitless) 3 bins: 34.7-35.0, 35.0-35.3, or 35.4-35.6 Significant effect of salinity
a
 

8. PAR (µmol m
-2 

s
-1

) 4 bins: <50, 50-100, 100-200, or >200 µmol m
-2

s
-1

 Significant effect of PAR
b
 

9. Sampling time 3 bins: <10:00, 10:00-14:00, or >14:00 Significant effect of time
b
 

10. Coral colony depth 7 bins: <5, 5-10, 10-15, 15-20, 20-25, 25-30, or >30 m Significant effect of depth
a
 

11. Coral host genotype
c
 4 species: P. damicornis, P. acuta, P. verrucosa, or P. meandrina

d
 Significant effect of host

a
 

12. Coral colony color
c
 4 colors: normal, pale, very pale, or bleached Higher STG expression in bleached corals

b
 

a
confirmed by the majority of statistical approaches (Tables 4-6). 

b
not statistically supported by the majority of statistical approaches (Tables 4-6).

 

c
technically a property of the sampled colony (rather than the environment) but nevertheless hypothesized to influence coral physiology. 

d
The lone 

P. brevicornis colony sampled was excluded from the statistical analysis (see main text.). 
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Table 3. Response variables (RV) assessed in the sampled pocilloporid coral colonies. Of the 13 RV assessed in each of the 153 sampled coral 

colonies, only 12 were generally included in the suite of univariate and multivariate statistical analyses (MSA) described in this article. Of these 12, 

only the 11 molecular-physiological response variables (MPRV; i.e., excluding maximum [max.] length) were included in the MSA. All RV data 

film have been overlaid onto images of the sampled coral colonies on http://coralreefdiagnostics.com/lau-archipelagooverview/. Links to 

mitochondrial open reading frame sequences (mORF: used for genotyping), which are hosted on the National Center for Biotechnology 

Information web server, have also been overlaid onto these images. Table abbreviations: GCP=genome copy proportion. GFP=green fluorescent 

protein. NA=not applicable. RuBisCO=ribulose-1,5-bisphosphate carboxylase/oxygenase (large subunit). 

 

Response variable Unit/ 

abbreviation 

Proxy  Included in 

analyses? 

Reason for 

exclusion 

Hypothesis 

Size and biological composition response variables (n=4)    

1. Max. length cm size No Size not hypothesized to be reflective of coral health. 

2. Planar surface area cm2 size No Collinear with max. length. 

3. RNA/DNA ratio unitless total gene expression Yes NA Very high or very low values indicative of aberrant behavior. 

4. Symbiodinium GCP unitless Symbiodinium density Yes NA Very low values indicative of aberrant behavior (bleaching). 

Symbiodinium gene expression (n=5) Function    

5. heat shock protein 90 hsp90 molecular chaperone Yes NA Very high values indicative of aberrant behavior. 

6. ascorbate peroxidase apx1 oxidative stress Yes NA Very high values indicative of aberrant behavior. 

7. ubiquitin ligase ubiq-lig cellular stress 

response/proteolysisa 

Yes NA Very high values indicative of aberrant behavior. 

8. RuBisCO rbcL photosynthesis Yes NA Very high values indicative of aberrant behavior. 

9. zinc-induced  

    facilitator-like 1-like 

zifl1l metabolism Yes NA Very high values indicative of aberrant behavior. 

Host coral gene expression (n=4) Function    

10. GFP-like  

      chromoprotein 

gfp-cp light absorption Yes NA Very high values indicative of aberrant behavior. 

11. copper-zinc super- 

      oxide dismutase 

cu-zn-sod oxidative stress Yes NA Very high values indicative of aberrant behavior. 

12. lectin  lectin cell adhesion Yes NA Very high values indicative of aberrant behavior. 

13. carbonic anhydrase ca metabolism Yes NA Very high values indicative of aberrant behavior. 
aWelchman et al. (2005)
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    PERMANOVA and PERMDISP. 

Given the aforementioned issues with 

using parametric statistical approaches 

with reef coral datasets, PERMANOVA 

(permutational ANOVA of [raw] 

similarity) was carried out with PRIMER 

6 featuring the PERMANOVA+ plug-in 

(Anderson et al., 2008) to test for the 

effects of each of the target EP (Table 2) 

on the similarity among samples after first 

creating a Euclidean distance matrix 

(EDM) with the standardized data. 

Additionally, the PERMDISP feature of 

PRIMER 6 (Anderson, 2006) was utilized 

with this same EDM to test for 

homogeneity of multivariate dispersions. 

The latter was carried out because we 

hypothesized that the dispersion in the 

coral physiological response might differ 

across environmental gradients, 

particularly ALCC levels. As discussed in 

detail in Mayfield et al. (in review), the 

variability in the coral response is likely 

to be more important than the mean 

response in terms of identifying aberrantly 

behaving coral colonies. For both 

similarity-based approaches, an alpha 

level of 0.05 was set.  

 

    Modeling the coral physiological 

response with SR and PLS. When 

dealing with a large number of predictor 

variables (i.e., the EP of Table 2), 

hypothesis-driven approaches such as 

ANOVA may lead to type I errors, even 

when dramatically adjusting the alpha 

level as in Mayfield et al. (2016a, 2017a-c; 

from 0.05 to 0.004 in these published 

works). Furthermore, hypothesis testing is 

poorly suited for identifying the optimal 

model for explaining a dataset, even when 

a multivariate similarity approach like 

PERMANOVA is used (Anderson et al., 

2000). For these reasons, information 

theory has been increasingly used in 

ecology (Anderson & Burnham, 2002) in 

order to develop the most appropriate, 

parsimonious, best-fit model for 

explaining the behavior of a particular RV 

(Mazerolle, 2006). Information theory is 

used routinely in coral reef ecology 

(Jorgensen et al., 2005) and ichthyology 

(Conover et al., 2006), but, to date, not to 

any great extent in coral physiology 

research (where hypothesis testing is far 

more common; e.g., Mayfield et al., 

2013c-d; Putnam et al., 2013; Mayfield et 

al., 2014c).  

    Herein we used an information 

theory-based SR program in JMP to select 

the best-fit model for each of 12 RV: max. 

colony length, Symbiodinium genome 

copy proportion (GCP), the RNA/DNA 

ratio, and expression of five 

Symbiodinium stress-targeted genes 

(STGs) and four host coral genes (Table 

3). Backwards model selection was used 

such that all EP were initially considered, 
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and a stopping rule was enacted based on 

minimizing the “Bayesian information 

criterion” (BIC). Finally, a “combine” rule 

was used such that, when necessary to 

minimize the BIC, certain EP were 

partitioned heuristically into 

sub-categories/bins. As a comparison to 

SR, PLS was used after converting the EP 

data into integers. For instance, the islands 

were scored as follows: Totoya=1, 

Matuku=2, Moala=3, etc. The other EP 

were converted to continuous numerical 

terms in a similar fashion. PLS not only 

attempts to find a best-fit model for the 

response data (y), but also the EP (x; 

predictor) data. A NIPALS method was 

used with “leave-one-out” validation, with 

12 factors initially considered. The model 

featuring the minimum root mean 

predicted residual sum of squares (PRESS) 

was selected, except for when 0 latent 

factors were deduced by JMP, in which 

case a model featuring a single latent 

factor was instead chosen. A stringent 

variable importance parameter (VIP) 

threshold of 1 was chosen (as opposed to 

the JMP-recommended VIP threshold of 

0.8), and both positive and negative 

coefficients were chosen (i.e., EP that 

were positively or negative correlated, 

respectively, with the target RV). To 

simulate the predictive power of the PLS 

models, random sub-samples of the 

dataset were used for training, and 

training models were validated with 

another random subset of the dataset. 

    The aforementioned analyses sought 

to identify the EP (or combinations 

thereof) that best accounted for variation 

in each of 12 RV (the 11 MPRV+max. 

length). However, we were also interested 

in the suite of EP that best modeled 

variability in the multivariate coral 

response. Therefore, as a distance-based 

analog to the information theory+linear 

modeling analyses (SR & PLS), 

PRIMER’s “DistLM” (distance-based 

linear modeling; Clarke et al., 2014) 

program was used with the “best” 

selection procedure and a minimum AICc 

selection criterion. In other words, the 

EP(s) best accounting for between-sample 

differences in the underlying EDM 

was/were identified. As a comparison, 

models were also built based on 

minimizing the adjusted r
2
 values. A 

multivariate PLS was also considered in 

the initial analyses, but the resulting 

power of the models developed was 

generally too low to be worthy of 

inclusion herein. 

 

    Outlier analysis. A detailed treatise 

on identification of outliers in the Lau 

Archipelago dataset can be found in 

Mayfield et al. (2017b). Briefly, the 

Mahalanobis distance (MD) 
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Fig. 1. Contour plots of 

environmental data in Fiji’s Lau 

Archipelago. The sizes of the data 

clouds are proportional to the data 

variability, and, given generally high 

variability, all islands are masked. An 

inset adjacent to (a) shows a canonical 

correlation analysis (CCA) plot of the 

continuous environmental data 

(temperature [temp.], salinity, and 

average live coral cover [ALCC]) vs. 

island, and there was a statistically 

significant effect of island (Wilks’ 

lambda, p<0.0001). Centroids represent 

95% confidence, and the black EP biplot 

rays at ~11:00, ~2:00, and ~5:00 

represent salinity, ALCC, and temp., 

respectively. Due to spatial constraints, 

the plot positions of only two islands 

(Fulaga and Kabara) have been denoted; 

others are available upon request (or by 

reconstructing one’s own CCA plot 

using the raw data provided in the 

online data supplement). Please note 

that, although the effect of island was 

statistically significant, 52% of the sites 

were misclassified by the associated 

discriminant analysis. For a data-free 

map of the Lau Archipelago, please see 

Mayfield et al. (2017b). The 

international date line has been 

highlighted in bold.  
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was calculated across the 11 MPRV to 

serve as the primary means of identifying 

outliers, and those samples whose MD 

values were >5 and whose heat map 

scores (HMS) were ≥1 were considered to 

be outliers. Briefly, a sample featuring a 

MPRV with a z-score >2 would be given 

an HMS of 1. To corroborate this outlier 

assignment, the principal coordinate from 

the primary axis of a principal coordinates 

ordination (PCO) analysis carried out by 

PRIMER 6 was calculated (“PC1”) and 

regressed against the MD. It should be 

noted that, because this PCO was carried 

out with an EDM, it is comparable to the 

more commonly employed PCA. The MD 

and PC1 score are collectively referred to 

as “multivariate variability terms” 

throughout the manuscript. We also 

calculated a second (after the HMS) 

“univariate variability term” known as the 

“variability index” (VI), which was first 

described by Mayfield et al. (2017a-b). 

This term is simply the standard deviation 

of the z-score-transformed (i.e., 

standardized) data across all RV for an 

Fig. 2. Contour plots of standardized pocilloporid coral data in Fiji’s Lau 

Archipelago. Please see Table 3 for full gene names.  
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individual coral biopsy. For instance, if 

the z-scores for the 11 MPRV measured 

herein were 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 

11 for a particular coral sample, its VI 

would be 3.3.  

    We hypothesized that samples with 

high VI (within-sample variation) would 

also tend to be characterized by relatively 

high MD (between-sample variation; i.e., 

a greater distance from the global 

centroid), and linear regression analysis 

was used to determine the significance of 

this relationship across the 69-sample 

dataset. JMP’s “predictor screening” 

program was used to calculate the relative 

effects of the MPRV on the MD. These 

findings can be found in Mayfield et al. 

(2017b). Finally, a discriminant analysis 

(DA) was used with outlier status (yes vs. 

no) as the x (categorical) variable in order 

to create a best-fit model in which 

environmental data could be used to 

predict whether or not a sample would be 

considered an outlier. A similar DA was 

performed with the 11 MPRV in order to 

uncover which are most important in 

determining whether or not a sampled 

colony was displaying aberrant behavior. 

A more simplistic, X
2
-based outlier 

frequency analysis (as a function of EP) 

can be found in Mayfield et al. (2017b), in 

which it was found that outlier 

distribution was effectively random across 

environments.  

Results and discussion 

 

    Multivariate findings. A variety of 

both univariate and multivariate statistical 

methods were taken to attempt to 

understand the EP (or combinations of EP) 

that best accounted for spatio-temporal, or 

otherwise environmental, variation in 

coral physiology. Although data tended to 

be non-normally distributed and 

heteroskedastically variable (even upon 

log, rank, or other transformations), 

MANOVA was nevertheless carried out 

by Mayfield et al. (2017b) with the 11 

MPRV (Table 4), and only island and host 

genotype had a significant effect on the 

multivariate mean. When using a more 

conservative distance-based approach 

known as PERMANOVA to model 

environmental effects on the multivariate 

coral response (Table 4), only host 

genotype affected mean sample similarity; 

there was also a marginal effect of reef 

zone. For a graphical view of this host 

effect on the coral dataset, please see Fig. 

3a, in which some clustering by species is 

evident. Additionally, a DA-based CCA of 

host can be found in Fig. 5c. In contrast, 

forereef and lagoonal samples appeared 

inter-mixed in the MDS plot (not shown). 
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Table 4. Permutational ANOVA (PERMANOVA), PERMDISP, discriminant analysis (DA), and multivariate ANOVA 
(MANOVA). The former two approaches were carried out with a Euclidean distance matrix of standardized data (the 11 
molecular-physiological response variables [MPRV] of Table 3), and the 12 environmental parameters (EP) of Table 2 (excluding 
site, date, and Symbiodinium assemblage) were considered as predictors. For PERMANOVA raw data were permutated in an 
unrestricted manner (type III, partial), and, in certain cases, the df is higher than would be expected from Table 2 due to the 
inclusion of “missing data” as a category in the analysis. JMP®’s partial least squares-based DA algorithm was used to build 
best-fit models of categorical environmental data with the 11 MPRV (as continuous y-variables), and the percent of samples 
misclassified with respect to each EP was calculated. MANOVA was also carried out upon excluding the 11 outliers uncovered 
(discussed below and in Mayfield et al., 2017b; values in cells represent p-values.). Table abbreviations: NS=not significant, 
PA=Pocillopora acuta, PB=P. brevicornis, PD=P. damicornis, PM=P. meandrina, PV=P. verrucosa, and temp.=temperature. 

 

*Wilks’ lambda, p<0.05 (see Fig. 5c.).  

 PERMANOVA PERMDISP 

(centroid) 

DA MANOVA excluding 

11 outliers & PB 

EP df Pseudo-F P (perm) post-hoc test F p(perm) % mis- classified   

island 8, 61 1.14 0.13  1.26 0.65 51* NS 

exposure 2, 67 1.22 0.28  1.42 0.36 40 <0.05 

reef type 3,66 1.35 0.20  0.39 0.93 31 NS 

reef zone 1, 68 2.14 0.05 forereef lagoon 2.51 0.17 21 NS 

ALCC 4, 65 0.80 0.69  1.57 0.36 50 NS 

temp. 1, 68 0.96 0.44  0.77 0.46 40 NS 

salinity 7, 62 1.08 0.33  0.93 0.79 51 NS 

PAR 4, 65 0.79 0.79  1.57 0.39 49 NS 

time 2, 67 0.86 0.59  0.19 0.88 46 <0.01 w/ transformed 

data 

depth 7, 62 0.89 0.54  1.60 0.76 57 NS 

host 4, 65 1.98 0.04 PA PV PD 2.87 0.16 31* <0.01 w/ & w/o data 

transformation 

color 4, 65 0.94 0.52  1.64 0.32 47 NS 

    mean % misclassified 43  
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Fig. 3. Multi-dimensional scaling (MDS) plot of the 69 Fijian samples analyzed in 
full and summary of environmental effects. In the MDS plot (a), the 11 outliers have 
been labeled, and the species icon legend is found in the bottom left corner. Images of 
two outliers have been included, and the yellow and white colony tags (the scaling 
objects) are 6.1 (from the metallic protrusion on the left side to the right end) and 4.7 
(width) cm, respectively. For labeled biplot ray axes (red arrows; some of which overlap) 
in the principal components loading plot, please see Mayfield et al. (2017b). In (b), the 
icons are proportional to the number of analytical approaches that yielded a statistically 
significant finding (p<0.05); three univariate (one-way ANOVA, stepwise regression, and 
partial least squares) and four multivariate (last row only) approaches (MANOVA, 
DistLM, PERMANOVA, and PERMDISP) were utilized, meaning that the maximum 
frequencies were three and four, respectively. As an example of how to interpret this 
panel, one of the three univariate statistical approaches documented a significant effect of 
reef exposure on maximum (max.) colony length (bubble size=1), whereas there was no 
effect of reef exposure on the multivariate molecular-physiological response (no bubble 
present).  
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Fig. 4. Graphical breakdown of the environmental parameters (EP) included in the 
best-fit stepwise regression (SR) and partial least squares (PLS) models. The inner 
and outer pie graphs in (a-o) depict the SR and PLS model EPs, respectively, and the EPs 
characterized by the highest F-test p-values have been listed at the bottom left and top 
right of each panel, respectively. In (p), the proportional breakdown of the EPs in all 15 
response variable (RV) models (maximum [max.] colony length, the 11 
molecular-physiological response variables, the variability index [VI], the principal 
components analysis primary axis loading score [PC axis 1 or PC1]), and the 
Mahalanobis distance [MD]) has been included for SR and PLS, and EPs that were 
represented in a significantly higher proportion of models generated by one approach 
over the other (X

2
 test, p<0.05) have been underlined. The r

2
 values (x 100; adjusted r

2 
for 

SR and raw r
2
 for PLS) have been plotted across RV in (q), and the global mean SR and 

PLS r
2 
values have been plotted as red and blue horizonal lines, respectively. Please note 

that, in certain cases, the EP colors do not sync with those in the manuscript’s other 
figures and tables (e.g., colony color).  
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Fig. 5. Proportional breakdown of the environmental parameters (EP) across all 
stepwise regression (SR) and partial least squares (PLS) models and a canonical 
correlation analysis (CCA) of host coral species. As shown in Table 5, 28 and 64 
statistically significant EP were featured in the 15 SR (a) and 15 PLS models (b), 
respectively. There was a relatively higher proportion of the EP “depth” in the SR models 
(32%) than in the PLS ones (5%; see Fig. 4p for details.). Please note that, in certain 
cases, the EP colors do not sync with those in the manuscript’s other figures and tables 
(e.g., reef zone, which is yellow in most other tables and figures.). In the CCA (c), the 
centroids represent 95% confidence, and their colors match the font color of the four 
sampled pocilloporid coral species. Only one positive biplot ray has been labeled; the 
(negative) ray pointing towards 8:30 (clock position; towards the Pocillopora verrucosa 
centroid) is the Symbiodinium genome copy proportion (GCP), which was marginally 
higher in P. verrucosa samples when compared to the other three species (NS). CCA plot 
icons: L=outlier, plus sign (+)=<5 m depth, circle (o)=5-10 m depth, square=10-15 m 
depth, upside-down v=15-20 m depth, triangle=20-25 m depth, diamond=25-30 m depth, 
and z=greater than 30 m depth.  
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Table 5. Summary of stepwise regression (SR) and partial least squares (PLS) results. Details of SR can be found in 
Supplemental table 2. Details of the PLS analysis, which was not undertaken with the Australs-Cooks (A-C) dataset, can be found 
in Supplemental table 3. Statistically significant F-test (p<0.01) Fiji SR model terms have been underlined; for A-C, only 
statistically significant terms have been included. When the mean adjusted (adj.) r

2
 values for PLS (Fiji only) and SR (Fiji+A-C) 

were both under 0.19, the models were deemed “poor-fit” in the “Important drivers of variation” column; for mean adj. r
2
 >0.19 

(i.e., >19% cumulative response variable variation explained), the EP that featured in the models derived from multiple approaches 
(or in multiple regions) have instead been listed in this column. The Fiji data found in this table have been plotted in Fig. 4. 
PC1=principal components analysis primary axis loading score. MD=Mahalanobis distance. VI=variability index. VIP=variable 
importance parameter.  

 
 

Response 

variable 

SR-Fiji (model terms) SR 

adj. 

r2 

PLS-Fiji (VIP>1) PLS-Fiji  

r2 

A-C dataset 

SR (model 

terms)  

SR- 

A-C 

adj. 

r2 

Important drivers of variation 

(mean r2) 

Max. length PAR>host>island>depth 0.37 depth>host>exposure>color>salinity 0.13 host  0.12 depth & host (0.21) 

RNA/DNA depth>island 0.21 depth>PAR>temp.>ALCC 0.12 ALCC 0.44 depth & ALCC (0.26) 

Sym GCP depth>color>exposure 0.31 exposure>island>reef zone>reef type 0.17 host>depth> 

ALCC 

0.47 depth & exposure (0.32) 

Sym hsp90 depth>island 0.16 reef zone>ALCC>color 0.06 island  0.21 poor-fit models 

Sym apx1 color>island 0.12 island>salinity>color 0.16 salinity 0.37 color, salinity, & island (0.22) 

Sym ubiq-lig depth>reef type>host 0.22 reef zone> reef type>time>ALCC> 

exposure>color 

0.12 host 0.28 host & reef type (0.21) 

Sym rbcL depth> reef type 0.16 reef zone>island>exposure>color 0.16 not analyzed  poor-fit models 

Sym zifl1l ALCC>exposure>salinity 0.37 salinity>island>exposure>PAR>time 0.33 not analyzed  salinity & exposure (0.35) 

host gfp-cp island>depth>salinity 0.32 island>ALCC>host 0.08 not analyzed  island (0.20) 

host cu-zn-sod host>depth>island 0.31 island>salinity>ALCC 0.08 not analyzed  island (0.20) 

host lectin depth>color 0.08 depth>PAR>salinity>island>color 0.17 not analyzed  poor-fit models 

host ca island>color 0.12 salinity>host>color>PAR 0.13 not analyzed  poor-fit models 

PC1 depth>color>exposure 0.25 color>reef type>reef zone>island> 

temp.>ALCC 

0.25 temp.>host> 

ALCC  

0.37 color, temp., & ALCC (0.29) 

VI ALCC>depth 0.12 host>color>ALCC>time 0.05 host 0.19 poor-fit models  

MD ALCC>exposure>island 0.18 reef zone>exposure>ALCC>temp.> 

color 

0.05 island>host 

(0.40) 

0.40 ALCC, island, & exposure (0.21) 

 Mean SR-Fiji adj. 

 r2 

0.22 Mean PLS-Fiji  

r2 

0.14 Mean 

SR-A-C r2  

0.32 Mean overall r2 =0.23 
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Table 6. Summary of the effects of 12 environmental parameters (EP) on the univariate and multivariate coral physiological 
response (11 molecular-physiological response variables [MPRV] only). In the univariate ANOVA cells, significantly affected 
response variables have been listed, whereas the mean (±std. dev.) adjusted (adj.) r

2 
values across the 1) maximum colony length, 2) 

11 MPRV, 3) variability index, 4) Mahalanobis distance, and 5) principal components analysis primary axis loading scores (PC1) in 
which the respective EP was included have been inserted in the “SR-adj. r

2
” and “PLS-VIP>1” columns (the frequency [freq.] of 

inclusion of the EP in all 15 RV models has been included in parentheses.). For the multivariate statistical approaches (MSA), 
multivariate p-values have instead been included in the cells, except for the case of distance-based linear modeling (DistLM), in 
which those EP “included” in the model characterized by the minimum Akaike information criterion value have instead been 
inserted. As no significant effects of PERMDISP were uncovered, this approach has been excluded from the table. When outliers 
were excluded, “time” was found to significantly affect the multivariate coral response (see Table 4.). Table abbreviations: 
ALCC=average live coral cover. NS=no response variables were affected by the EP (univariate statistical approaches) or not 
statistically significant (MSA). PLS=partial least squares. Sym=Symbiodinium. Temp.=temperature. VIP=variable importance 
parameter.  

 

a
First presented in Mayfield et al. (2017b). 

b
analyzed as part of this work (see Table 5 and Supplemental tables 2-3 for details.). 

c
analyzed as part 

of this work (see Table 4 for details.). 
d
analyzed as part of this work (see Supplemental table 1 for details.).  

 Univariate analyses Multivariate statistical analyses 

  Information theory  Similarity analysis  

EP ANOVA
a
 SR-adj. r

2 
(freq.)

b
 

PLS-VIP>1
 

(freq.)
b
 

MANOVA
a
 

PERMA- 
NOVA

c
 

DistLM
d
 

Significant driver of 
coral physiological 
variation? 

rank 

Host host gfp-cp 
& cu-zn-sod 

0.34±0.03 (2) 0.10±0.02 (4) p<0.05 p<0.05 included Yes 1 

Island NS 0.22±0.09 (5) 0.18±0.08 (8) p<0.05 NS included Yes 2 
Depth NS 0.22±0.08 (9) 0.14±0.03 (3) NS NS included Yes 3 
Reef exposure NS 0.29±0.10 (3) 0.16±0.09 (6) NS NS NS Yes 4 
ALCC Sym zifl1l 0.28±0.13 (2) 0.10±0.07(8) NS NS included Somewhat 5 
Salinity NS 0.35±0.04 (2) 0.17±0.09 (6) NS NS NS Somewhat 6 
Color NS 0.17±0.12 (3) 0.13±0.06 (3) NS NS included Somewhat 7 
Reef zone NS NS (0) 0.14±0.08 (6) NS p=0.05 included Somewhat 8 
Reef type NS 0.16 (1) 0.18±0.07 (3) NS NS included Somewhat 9 
PAR NS 0.37 (1) 0.19±0.10 (4) NS NS NS No 10 
Time Sym zifl1l NS (0) 0.17±0.15 (3) NS NS included No 11 
Temp. NS NS (0) 0.14±0.10 (3) NS NS NS No 12 
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    In contrast to MANOVA and 

PERMANOVA, multivariate dispersion 

(as assessed by PERMDISP) was similar 

across all 12 EP (Table 4); this suggests 

that PERMANOVA was a suitable means 

for analyzing the data. It also indicates 

that coral physiology was not more 

variable under certain environmental 

conditions when compared to others. As 

further evidence of this, the MD was not 

affected by any EP; distribution of 

multivariate outliers was, then, markedly 

random, and best-fit models (SR and PLS) 

for modeling the MD were characterized 

by weak r
2
 values (0.18 and 0.05, 

respectively). This means that it is not 

currently possible to predict with 

confidence where, or under which 

environmental conditions, corals 

displaying aberrant behavior will be 

located; however, upon analysis of a 

greater portion of the GRE dataset, 

statistical models characterized by higher 

predictive capacity will surely be 

developed. It is worth noting there that 

DistLM, which relies on information 

theory-based approaches to generate the 

most parsimonious best-fit models, 

yielded models with very low r
2
 values 

(<0.10; Supplemental table 1); for this 

reason, these DistLM data are not 

discussed at any great length herein. 

    Univariate findings. A one-way 

ANOVA matrix of the 12 EP against the 

12 RV (max. length+11 MPRV; n=144 

tests) can be found in Mayfield et al. 

(2017b); briefly, very few univariate 

effects of environment were detected at 

the highly stringent, Bonferroni-adjusted 

alpha level of 0.004, and all such 

differences are listed in the summary table 

(Table 6). There was a statistically 

significant effect of ALCC and sampling 

time on Symbiodinium zifl1l mRNA 

expression, as well as a significant effect 

of host coral genotype on host gfp-cp and 

cu-zn-sod mRNA expression.  

 

    Outlier analysis. A detailed treatise 

on the 11 outliers uncovered can be found 

in Mayfield et al. (2017b). A DA 

(categorical x-variable=outlier status: yes 

vs. no) was carried out with the 11 MPRV 

(as y [RV] covariates) used to calculate 

the MD, and only one sample was 

misclassified (4%) by a PLS-like model 

featuring a mix of host and Symbiodinium 

gene mRNAs as the dominant, 

standardized loading coefficients (detailed 

information not shown; Wilks’ lambda, 

p<0.001). However, when using a DA 

with the EP converted to integers, 33% of 

the samples were misclassified, and 

Wilks’ lambda was not statistically 
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significant. This is further evidence for the 

observation, noted above, that it is not 

currently possible to predict where, or 

under what environmental conditions, 

corals displaying aberrant behavior are 

most likely to be found. It is interesting to 

note, though, that those samples 

characterized by high VI (within-sample 

variation) were also those with the highest 

MD (inter-sample variation; linear 

regression t-test, r
2
=0.83, p<0.001 [data 

not plotted]), as was documented 

previously in another pocilloporid coral 

dataset (Mayfield et al., in review). In 

other words, corals displaying aberrant 

behavior were more likely to demonstrate 

high variability across RV. Although it is 

premature to speculate on whether these 

11 outliers were significantly more 

stressed than non-outliers, it is worth 

noting that high transcriptional variability 

is a hallmark of many cancers (Han et al., 

2016; Sharma et al., 2018) and points to a 

loss of homeostasis. Additionally, and as 

was pointed out by Mayfield et al. 

(2017b), these outliers were also 

characterized by lower Symbiodinium 

densities and higher stress gene 

expression, also pointing to their being 

stressed. Future works should, then, 

attempt to uncover whether these outliers 

are, for instance, more likely to bleach 

than those found to be displaying 

statistically normal behavior at the time of 

sampling. Indeed, we hypothesize that, 

more generally, variability in the coral 

response is more important than the mean 

response (sensu Cleophas et al., 2006) 

when attempting to gauge the 

environmental sensitivity of a sampled 

colony; this idea could be directly tested 

in a controlled aquarium setting.  

 

    SR and PLS. Both SR and PLS 

(summarized in Table 5, with details 

found in Supplemental tables 2 and 3, 

respectively) were used to determine the 

EP (or combinations thereof) that best 

modeled variation in max. colony length, 

the 11 MPRV, the VI, PC1, and the MD 

(n=15 models built), and the data have 

been depicted graphically in Fig. 3b and 

Fig. 4a-o. Please note that in the former 

figure, the frequencies (as bubbles) could 

feature not only SR and PLS, but also 

one-way ANOVA (i.e., RV for which SR, 

PLS, and one-way ANOVA all determined 

the EP in question to be significant would 

be characterized by a frequency of 3.). 

Although SR and PLS tended to feature 

the same EP in the models for each of the 

RV (Table 5), depth was featured in a 

significantly higher proportion of the SR 

models (Fig. 4p). Furthermore, SR models 
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tended to yield higher r
2
 values 

(0.22±0.09) than PLS models (0.14±0.08; 

Fig. 4q). However, as both the predictor 

variables (e.g., temperature and salinity) 

and response variables (e.g., 

Symbiodinium gene expression) tended to 

co-vary (Mayfield et al., 2017b), it is 

likely that PLS is nevertheless a superior, 

more robust approach for developing 

predictive models with environmental 

datasets featuring sampled reef coral 

colonies (Cox & Gaudard, 2013).  

    As mentioned above, 11 outliers 

were deliberately left in the dataset during 

the aforementioned model generation 

exercises, as we feel these aberrantly 

behaving colonies may be those of most 

interest to those seeking to develop means 

of identifying corals and coral reefs that 

are potentially stress sensitive (or, 

alternatively, of a marked capacity for 

resilience to GCC or other anthropogenic 

stressors). That being said, future 

predictive modeling efforts with reef coral 

datasets may be better served by 

excluding such outliers; although 

information will be lost on potentially the 

most stress-sensitive or, alternatively, 

bleaching-resistant samples, the ensuing, 

outlier-free models will almost surely be 

characterized by improved predictive 

capacity. As an example of this, 

MANOVA was undertaken herein upon 

the removal of the outliers (Table 4), and 

two additional EP not found by other 

multivariate methods to be significant 

drivers of variation in coral physiology, 

sampling time and reef exposure, yielded 

statistically significant results. It should 

be noted, though, that the SR and PLS 

models generated herein did not improve 

markedly upon exclusion of the 11 

outliers (data not shown), though this 

could simply due to the small size of the 

resulting dataset (n=58 without the 

outliers).  

    When looking at the shear frequency 

at which an EP was included in a model 

(Tables 5-6 and Fig. 4p), island ranked 

highest; this EP was found in 5 and 8 of 

the 15 SR and 15 PLS best-fit models, 

respectively (n=13/30 models; 43% of all 

models). This equated to 18% (Fig. 5a; 

n=28 total model terms for SR) and 13% 

(Fig. 5b; n=64 total model terms for PLS) 

of the best-fit model terms (14% of the 92 

best-fit model terms). When compared to 

the PLS models, depth was featured in a 

relatively higher proportion of the SR 

models (Fig. 4p); depth comprised nearly 

1/3 of all 28 SR model terms (Fig. 5a) and 

was featured in 9 of the 15 SR best-fit 

models for the individual RV (Table 5 and 

Supplemental table 2). In contrast, it 
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featured in only 3 of the 15 PLS best-fit 

models (Table 5 and Supplemental table 

3), equating to less than 5% of all PLS 

model terms (Fig. 5b). Across both 

modeling methods, then, 12 of the 30 RV 

models constructed featured depth (40%), 

and depth comprised 12 of the 92 best-fit 

model terms (13%). For this reason, the 

CCA plot of host coral described below 

(Fig. 5c) features icons labeled by depth.  

    Although host coral genotype was 

featured as a significant model term in 

only 2 and 4 SR and PLS RV models, 

respectively (Table 5; 6/30 models built; 

20%), the global average r
2
 for models 

featuring “host” as a significant term was 

relatively high (0.22), and, furthermore, 

host genotype was found to significantly 

affect the multivariate coral phenotype 

(MANOVA and PERMANOVA, p<0.05; 

Table 4). In contrast, although island and 

depth were featured in more models and 

were characterized by statistically similar 

global r
2
 values (0.20 and 0.18, 

respectively; Table 6), neither was found 

to significantly affect coral physiology by 

multiple MSA; for this reason, we 

consider host coral genotype to be the 

biggest driver of variation in coral 

physiology in the Lau Archipelago dataset 

(see ranks in Table 6.).  

    When looking at the Fiji dataset 

analyzed alongside the Australs-Cooks 

one (Table 5 and Supplemental tables 2-3), 

host and island were also the two most 

important EP with respect to driving 

variation in pocilloporid coral physiology. 

It is perplexing as to why island itself 

featured in best-fit models to a greater 

extent than the underlying characteristics 

defining the islands’ coral reef ecosystems 

(e.g., reef type, reef zone, reef exposure, 

temperature, etc.). Were it simply driven 

by latitudinal differences between the 

islands (see Figs. 1-2), we would expect 

temperature to also feature heavily in the 

models; in fact, this was the least 

important term (Table 6). That being said, 

there are myriad properties and 

characteristics of the individual islands 

whose reefs were surveyed that could 

have driven this island effect. Of note, 

population density varies greatly across 

the Lau Archipelago (data not shown); 

different land-use practices (e.g., 

agriculture) could have contributed to 

differences in nutrient levels in the 

seawater surrounding the coral reefs. 

Unfortunately, nutrient levels were not 

assessed herein, and we, in fact, highly 

recommend that those undertaking similar 

eco-physiological assessments of coral 

reefs (and reef corals) take, at a minimum, 

measurements of seawater nitrogen levels 
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in their future survey projects.  

    Another reason why island may have 

featured in so many best-fit models is due 

to the co-variation between island and 

host genotype frequency (Mayfield et al., 

2017b); the assemblage of pocilloporid 

corals varied across islands, and, as is 

evidenced by this manuscript’s data (as 

well as those of other works; e.g., 

Mayfield et al., 2016a, 2017c), there are 

clear differences in the molecular 

physiology of closely-related (con-generic) 

pocilloporid corals. In the Lau 

Archipelago dataset, P. acuta and P. 

verrucosa were particularly well 

partitioned in a CCA (Fig. 5c; Wilks’ 

lambda, p<0.001); this was driven, in part, 

by higher host coral cu-zn-sod mRNA 

expression in the former species (3.5-fold) 

relative to the latter. P. verrucosa colonies 

tended to have higher Symbiodinium 

densities than the other three species, 

though this difference was not statistically 

significant. Despite the significant 

MANOVA/CCA of host and the visible 

separation of P. acuta and P. verrucosa in 

the CCA plot, nearly 31% of the samples 

were misclassified in the associated DA; 

in other words, the underlying predictive 

model could only correctly “call” the 

correct species 2/3 of the time. Of the four 

coral species, only P. verrucosa was 

characterized by a stable enough 

phenotype to be correctly classified in a 

high percentage of cases by PLS-based 

DA (16/18 samples were properly 

classified; 89%).  

 

Conclusions 

    With the exception of the statistical 

classification of P. verrucosa, nearly all 

predictive models were characterized by 

low r
2
 values (Tables 5-6; 22 and 14% for 

SR and PLS, respectively) and high 

misclassification rates (Table 4; 

mean=nearly 50%). Although to an 

ecologist attempting to make explanations 

of the natural world, these values might be 

acceptable, a manager in need of 

predicting coral behavior with confidence 

based on local environmental conditions 

would do no better than flipping a coin. 

However, upon analyzing the far larger 

dataset produced during the LOF’s GRE, 

only a small portion of which has been 

assessed to date, we feel confident that we 

will ultimately possess the capacity to 

develop eco-physiological predictive 

models for reef corals such that we can, 

for instance, insert abiotic data into an 

equation and predict, with some 

confidence, how corals at the site/reef in 

question will behave. Such predictive 

models will become increasingly critical 



Platax 15: 1-35, 2018 

 

 

 26 
 

given the aforementioned need to forecast 

how coral reefs will respond to the 

increases in temperature, in particular, that 

will characterize their habitats in the 

coming years (Cinner et al., 2016).   
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Supplemental tables 

 
Supplemental table 1. PRIMER’s (ver. 6) distance-based linear modeling (DistLM) function using a Euclidean distance similarity matrix of 

70 Lau Archipelago (Fiji) samples for which no data were missing. Categorical environmental data were converted into integers (e.g., Totoya 

Island=1, Matuku Island=2, etc.). Environmental parameters (EP) that were significantly correlated with the multivariate response in the marginal test 

(p<0.05) have been underlined in the “Exact model terms” column. Table abbreviations: Adj.==adjusted. AICc=Akaike’s information criterion. 

ALCC=average live coral cover. BIC=Bayesian information criterion.  

 

Selection criterion 
Selection 

procedure 
r

2
 Adj. r

2
 

AICc/ 

BIC 

# 

terms 
Exact model terms 

adjusted r
2
 all specified 0.22 0.06 NA 12 all 

adjusted r
2
 forward 0.19 0.09 NA 8 island, reef zone, reef type, depth, ALCC, time, host, color 

adjusted r
2
 backward 0.19 0.09 NA 8 island, reef zone, reef type, depth, ALCC, time, host, color 

adjusted r
2
 stepwise 0.19 0.09 NA 8 island, reef zone, reef type, depth, ALCC, time, host, color 

adjusted r
2
 best 0.19 0.09 NA 8 island, reef zone, reef type, depth, ALCC, time, host, color 

When attempting to create a model with the minimum adj. r
2
, one featuring island, reef zone, reef type, colony depth, ALCC, time, host species, and 

colony color was optimal.  

minimum AICc all specified 0.22 NA 180 12 all (only island and reef zone were significant) 

minimum AICc forward 0.04 NA 166 1 island 

minimum AICc backward 0.09 NA 167 3 island, reef zone, reef type 

minimum AICc stepwise 0.04 NA 166 1 island 

minimum AICc best 0.04 NA 166 1 island 

minimum BIC all specified 0.22 NA 203 12 all (only island and reef zone were significant) 

minimum BIC forward 0.04 NA 171 1 island 

minimum BIC backward unable to calculate  

minimum BIC stepwise unable to calculate  

minimum BIC best 0.04 NA 171 1 island 

When attempting to create a model with the minimum AICc or BIC, island was generally the most important EP in explaining the multivariate 

response (with reef zone being #2). 
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Supplemental table 2. Stepwise regression (SR) details. Models were built in stepwise, backwards fashion to minimize the Bayesian information 

criterion (BIC). Statistically significant (F-test, p<0.01) environmental parameter (EP) model terms have been underlined, and statistically significant 

models (<0.05) are denoted by asterisks (*). Of the 90 samples analyzed, the lone Pocillopora brevicornis colony sampled was excluded, as were 20 

samples featuring missing data (resulting in a final sample size of 69). Please note that “max. length” was included in this analysis but was excluded 

from the multivariate analyses (e.g., PERMANOVA) discussed in the main text. The Austral and Cook Islands (“Australs-Cooks”) dataset was first 

presented in Mayfield et al. (2015), with a more thorough multivariate statistics analysis undertaken more recently (Mayfield et al., in review), and, 

unlike for the Fiji data, only the significant model terms have been shown for the Australs-Cooks dataset. Table abbreviations: Adj.=adjusted. 

ALCC=average live coral cover. NA=not applicable. PAR=photosynthetically active radiation. RV=response variable. temp.=temperature. Please 

see the “Abbreviations” table in the main text for additional abbreviations (e.g., the variability terms).  

        a
rank-transformed data. 

b
square root-transformed data. 

c
log-transformed data. 

d
4th root-transformed data. 

 

 

 

 

 

Response variable BIC Adj. r
2
 Fiji dataset SR model terms Australs-Cooks dataset SR 

model terms (adj. r
2
) 

Conclusions 

  Max. length
a
 559* 0.37 PAR>host>island>depth host (0.12) strong effect of host  

   RNA/DNA
b
 12.1* 0.21 depth>island ALCC (0.44)* inconsistent results across regions 

   Sym GCP 539* 0.31 depth>color>reef exposure host>depth>ALCC (0.47)* strong effect of depth 

Symbiodinium gene expression   

   hsp90
c
 213* 0.16 depth>island island (0.21)* poor-fit models 

   apx1
b
 320* 0.07 color salinity (0.37) inconsistent results across regions 

   ubiq-lig
d
 178* 0.22 depth>reef type>host host (0.28)* strong effect of host 

   rbcL
d
 352* 0.16 depth>reef type RV not assessed poor-fit models 

   zifl1l
d
 329* 0.37 ALCC>exposure>salinity RV not assessed NA 

Host coral gene expression   

   gfp-cp
c
 250* 0.31 island>depth>salinity RV not assessed NA 

   cu-zn-sod
d
 208* 0.31 host>depth>island RV not assessed NA 

   lectin
a
 603* 0.16 depth>color RV not assessed poor-fit models 

   ca
c
 221* 0.12 island>color RV not assessed poor-fit models 

Variability terms     

   PC1
a
 601* 0.25 depth>color>exposure temp.>host>ALCC (0.37)* inconsistent results across regions 

   MD
a
 607* 0.18 ALCC>exposure>island island>host (0.40)* strong effect of island 

   VI
c
 108* 0.12 ALCC>depth host (0.28) poor-fit models 

Mean±std. dev. 0.22±0.09  0.33±0.11  
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Supplemental table 3. Partial least squares (PLS) analysis when treating environmental parameter (EP) data (n=12) as continuous terms (not categorical) 

in the statistical model input. As an example, the categorical EP “island” was treated as follows: Totoya=1, Matuku=2, Moala=3, etc. Positive coefficients have 

been underlined for the PLS rows, whereas significant (F-test, p<0.01) individual model terms have been underlined in the stepwise regression (SR) rows. EP with 

variable importance parameter (VIP) values >1 (“VIP EP;” right-most column) have been ordered from highest coefficient value (with positive associations 

underlined) to lowest (typically negative correlations). As a comparison, the SR data from the Austral and Cook Islands (“A-C”) dataset (Mayfield et al., in review) 

have also been presented (PLS was not undertaken with the A-C dataset.). The SR and PLS cumulative (“Cum”) y (response variable) variation explained (as 

percentage data) have also been plotted as an inset in Fig. 4. All error terms represent standard deviation. Table abbreviations: ALCC=average live coral cover. 

#factors (PLS)= the number of latent PLS factors. NA=not applicable. MD=Mahalanobis distance. PAR=photosynthetically active radiation. PC1=principal 

components analysis primary axis loading score. VI=variability index.  

 
Response variable #factors 

(PLS) 
#VIP>1.0 Cum X 

variation 
explained 

Cum Y 
varia-tion 
explained 

VIP EP 

Max. length-Fiji (PLS)
a
 1 5 16% 13% depth>host>exposure>color>salinity 

Max. length-Fiji (SR)
a
 NA NA NA 37% PAR>host>island>depth 

Max. length-A-C (SR)
c
 NA NA NA 12% host 

Max. length summary (Fig. 4a): host & depth in Fiji; host in A-C; host in both regions 
global mean max. length variation explained 21±14%  

RNA/DNA-Fiji (PLS)
b
 1 3 12% 13% depth>PAR>temp.>time>ALCC 

RNA/DNA-Fiji (SR)
b
 NA NA NA 21% depth>island 

RNA/DNA-A-C (SR)
a
 NA NA NA 44% ALCC>host>depth 

RNA/DNA summary (Fig. 4b): depth & ALCC in both regions 
global mean RNA/DNA variation explained  26±16% 

Sym GCP-Fiji (PLS) 1 4 24% 17% exposure>island>reef zone>reef type 
Sym GCP-Fiji (SR) NA NA NA 31% depth>color>exposure 
Sym GCP-A-C (SR) NA NA NA 47% host>depth>ALCC>color 
Sym GCP summary (Fig. 4c): 1) exposure & reef type in Fiji; host, depth, & ALCC in A-C; color & ALCC in both regions 

global mean Sym GCP variation explained 32±15%  
Sym hsp90-Fiji (PLS)

c
 1 3 22% 5.6% reef zone>ALCC>color 

Sym hsp90-Fiji (SR)
c
 NA NA NA 16% depth>island 

Sym hsp90-A-C (SR)
 c
 NA NA NA 21% island 

Sym hsp90 summary (Fig. 4d): generally inconsistent findings across methods; models characterized by low predictive power  
global mean Sym hsp90 variation explained 14±7.9%  

Sym apx1-Fiji (PLS)
b
 1 3 12% 16% island>salinity>color 

Sym apx1-Fiji (SR)
b
 NA NA NA 12% color>island 

Sym apx1-A-C (SR)
c
 NA NA NA 37% salinity>color>depth> temp.>host>island>ALCC 

Sym apx1 summary (Fig. 4e): color, island, & salinity in both regions  
global mean Sym apx1 variation explained 22±13%  

Sym ubiq-lig-Fiji (PLS)
d
 1 6 21% 12% reef zone>reef type>time>ALCC>exposure>color 

Sym ubiq-lig-Fiji (SR)
d
 NA NA NA 22% depth>reef type>host 

Sym ubiq-lig-A-C (SR)
a
 NA NA NA 28% host>time 

Sym ubiq-lig summary (Fig. 4f): reef type, time, & host in both regions  
global mean Sym ubiq-lig variation explained 21±8.0%  

Sym rbcL-Fiji (PLS)
d
 1 4 21% 16% reef zone>island>exposure>color 
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Sym rbcL-Fiji (SR)
d
 NA NA NA 16% depth>reef type 

Sym rbcL summary (Fig. 4g): generally inconsistent findings across methods; models characterized by low predictive power 
global mean Sym rbcL variation explained 16%  

Sym zifl1l-Fiji (PLS)
d
 1 5 17% 33% salinity>island>exposure>PAR>time 

Sym zifl1l-Fiji (SR)
d
 NA NA NA 36% ALCC>exposure>salinity 

Sym zifl1l summary (Fig. 4h): salinity in both regions   
global mean Sym zifl1l variation explained 35±2.1%  

Host coral gfp-cp-Fiji (PLS)
c
   1 3 14% 8% island>ALCC>host 

Host coral gfp-cp-Fiji (SR)
c
   NA NA NA 32% island>depth>salinity 

Host coral gfp-cp summary (Fig. 4i): island in both regions  
global mean host gfp-cp variation explained 20±17%  

Host coral cu-zn-sod-Fiji (PLS)
d
   1 3 19% 8% island>salinity>ALCC 

Host coral cu-zn-sod-Fiji (SR)
d
   NA NA NA 31% host>depth>island 

Host coral cu-zn-sod
 
summary (Fig. 4j): island in both regions  

global mean host cu-zn-sod variation explained 20±16%  
Host coral lectin-Fiji (PLS)

a
   2 5 27% 17% depth>PAR>salinity>island>color 

Host coral lectin-Fiji (SR)
a
   NA NA NA 8% depth>color 

Host coral lectin
 
summary (Fig. 4k): island in both regions, though models characterized by low predictive power 

global mean host lectin variation explained 13±6.4%  
Host coral ca-Fiji (PLS)

c
 1 4 12% 13% salinity>host>color>PAR 

Host coral ca-Fiji (SR)
c
 NA NA NA 12% island>color 

Host coral ca
 
summary (Fig. 4l): color in both regions, though models characterized by low predictive power 

global mean host ca variation explained 13±0.7%  
VI-Fiji (PLS)

c
 1 4 10% 5% host>color>ALCC>time 

VI-Fiji (SR)
c
 NA NA NA 12% ALCC>depth 

VI-A-C (SR)
c
 NA NA NA 28% host>ALCC>island 

VI summary (Fig. 4m): ALCC in both regions, though models characterized by low predictive power  
global mean VI variation explained 15±12%  

PC1-Fiji (PLS)
c
 1 6 31% 25% color>reef type>reef zone>island>temp.>ALCC 

PC1-Fiji (SR)
a
 NA NA NA 25% depth>color>exposure 

PC1-A-C (SR)
a
 NA NA NA 37% temp.>host>ALCC>salinity 

Principal components (PC1) summary (Fig. 4n): color & ALCC in both regions 
global mean PC1 variation explained 29±6.9%  

MD-Fiji (PLS)
a
 1 5 23% 5% reef zone>exposure>ALCC>temp.>color 

MD-Fiji (SR)
a
 NA NA NA 18% ALCC>exposure>island 

MD-A-C (SR)
a
 NA NA NA 40% island>host>ALCC 

MD summary (Fig. 4o): ALCC & exposure in Fiji; island & host in A-C; ALCC in both regions 
global mean MD variation explained 21±18% 

Mean PLS r
2
 (x 100)-Fiij (y) 14±7.6

a
 color was most common term in PLS best-fit models (10/15) 

Mean SR r
2
 (x 100)-Fiji 22±9.6

b
 depth was most common term in Fiji SR best-fit models (9/15) 

Mean SR r
2
 (x 100)-A-C 34±8.6%

c
 host was most common term in A-C SR best-fit models (5/9) 

Mean r
2
 (x 100) of both approaches (PLS & SR)-Fiji 19±9.4%

b
 

island (13/30) & color (13/30) were most common terms in Fiji 
best-fit models 

Mean r
2
 (x 100) of both approaches (PLS & SR)-Fiji+A-C 22±12%

b
 island was most common term in all best-fit models (15/39) 

a
rank-transformed. 

b
square root-transformed. 

c
log-transformed. 

d
4th root-transformed.  

 


