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The seismic design of steel-moment resisting frames is subjected to uncertainties originating from various
sources including imprecisely known seismic load, inaccurate modeling assumptions, as well as uncertain
material properties and connection behavior. These uncertainties must be considered in the structural design
process to ensure that a safe design is achieved. Design codes based on reliability of performance are useful
in providing safety margins for the performance objectives with quantifiable confidence levels considering
various sources of uncertainties. In these design codes, although seismic demand is usually calculated with
a suite of ground motions, only the median seismic demand is used in the subsequent calculation of accep-
tance criterion (i.e., confidence level), and variation in seismic demand is not used. In the present manuscript,
the authors utilize a performance based design approach for seismic design optimization of steel moment
resisting frames, where material weight, mean value of seismic demand and variation of seismic demand
are treated as three design objectives representing the cost, safety and robustness measures, respectively.
Through a case study application, the proposed methodology is demonstrated to be capable of providing a
set of Pareto-optimal designs with competing cost, safety and robustness. The obtained Pareto front designs
are utilized in the development of uniformity drift ratio as design efficiency indicator. Required uniformity
drift ratio to ensure efficient designs for each range of maximum inter-story drift is suggested based on the
obtained results. Finally, the influence of the selected connection model and the response modification factor
on the obtained results is investigated.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional steel moment resisting frame design, by its nature is
a trial and error process seeking designs that are both safe and eco-
nomical. Safety concerns are mitigated by compliance to the reliabil-
ity based design standards (e.g., ASCE 7 [1], AISC 360 [2], and FEMA
350 [3]), while economic concerns are typically evaluated considering
the initial construction cost. The structural designer then selects a de-
sign from several code-compliant candidate designs, according to the
cost and other project related factors. Since only a finite number of
candidate designs can be evaluated given the unavoidable limitations
on the design budgets and the designers' effort, the acquired design is
likely not to be the most optimal in its cost and/or safety.

Steel moment resisting frame design optimization, in previous re-
search efforts, is treated as either a single [4–7] or a multi-objective
optimization problem [8–12]. In single objective optimization, in
most cases, cost is treated as the only objective, while building code

and other project requirements are treated as constraints. Optimiza-
tion algorithm is then used to reach designs that satisfy the project re-
quirements with minimal cost. The tedious trial-and-error process,
which is customarily handled by the structural designer, is performed
by a computer algorithm with the entirety of the design space being
explored in search for the most optimal design. In multi-objective
optimization however, other criteria, such as the number of steel sec-
tions [10] can also be considered simultaneously with cost. For in-
stance, Sarma and Adeli [8] proposed a life cycle cost optimization
problem for steel structures with four optimization criteria: steel sec-
tion cost, steel section weight, the number of steel section types, and
perimeter length (to account for painting cost in life time).

Seismic design of steel moment resisting frames has been studied ex-
tensively through optimization based techniques. Liu et al. [9] optimized
initial material cost and life-cycle cost simultaneously considering AISC-
LRFD seismic provisions and 1997 NEHRP requirement as constraints.
Fragiadakis et al. [11] optimized steel material weight and life-cycle
costs using Eurocode 3 and Eurocode 8 requirements as constraints.
Rojas et al. [12]minimized bothweight and expected annual building re-
placement cost of steel moment-resisting frames simultaneously, with
performance objective confidence level requirement as constraint.

One aspect that has received little attention in the published litera-
ture is the fact that due to the inherent uncertainty in the construction
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and operational conditions of a structure, seismic demand may deviate
from expected values. Without considering immunity of seismic de-
mand to uncertainty, one may reach a design that has large sensitivity
to uncertainty and thus, large variation in performance. Herein, the im-
munity to uncertainty is referred to as ‘robustness’ as originally pro-
posed by Taguchi [13].

The present manuscript proposes a new steel moment resisting
frame design optimization approach utilizing robust design, a concept
originally developed and widely used in quality engineering [13, 14].
Our approach goes beyond studies that focus on the cost and mean
seismic demand, and considers robustness of the seismic demand
to uncertainty present in the seismic design process. Maximum
inter-story drift is used to assess the seismic demand, and the vari-
ability of ground motion is the considered as the source of uncertain-
ty. Hence, the mean value of maximum inter-story drift is used as the
safety measure; the standard deviation of the maximum inter-story
drift is used as the robustness measure, and material weight is used
to represent the cost of the design. A smaller mean value of
inter-story drift indicates less demand on the structure, and therefore
yields a safer design; while a smaller value of the standard deviation
of maximum inter-story drift indicates a more robust design. There-
fore, the proposed approach leads to a multi-objective optimization
problem resulting in a set of competing designs that are economical,
safe and robust.

The present manuscript is organized as follows. The fundamental
concept behind robust design is introduced in Section 2, performance-
based robust design optimization is discussed in Section 3. Multi-
objective optimization methodology implemented herein to solve the
robust design optimization problem is overviewed in Section 4. In
Section 5, the application of the proposed design approach is demon-
strated on a four-story three-bay steel moment resisting frame. In
Section 6, a parametric analysis is performed to investigate the effect
of the selected connection model and response modification factor on
Pareto front solutions. Finally, in Section 7, the conclusions are drawn,
limitations are discussed and suggestions for future work are given.

2. Robust design

The purpose of robust design is to make a product or response of
a system insensitive to (or robust against) “hard-to-control” input
parameters (called “noise factors”), by carefully adjusting “easy-to-
control” input parameters (called “design parameters” or “control
factors”). Robust design has successfully been used in industrial and
manufacturing engineering to produce high quality products and pro-
cesses. Two kinds of approaches are most widely used in robust de-
sign: (i) the Taguchi method and its variants [13, 14], and (ii) the
robust design optimization method [15].

The Taguchi method, fundamentally an experimental design ap-
proach, is characterized by an orthogonal array with design parameters
and noise factors assigned to inner and outer arrays, respectively [14].
For each set of design parameters, several experiments with different
combinations of noise factors determined from the outer array are
performed. Subsequently the analysis of mean is performed to charac-
terize design parameters into four categories: (i) design parameters
affecting mean and variance of the response, (ii) design parameters af-
fecting variance only, (iii) design parameters affecting mean only, and
(iv) design parameters affecting cost only. Design parameters of the
first two categories are adjusted to reduce variance; the third category
is adjusted to move the mean value of the response to the target value
and the last category is adjusted to reduce cost [14]. Though easy to im-
plement, the following limitations of the Taguchi method have made it
the subject of criticism [16]: (1) design parameters cannot always be
grouped into four distinct categories; and (2) due to the inherent exper-
imental nature of the design, only a select few designsmay be evaluated
and compared, prohibiting a thorough exploration of the design space.

With the development of computational capabilities and progress
in the optimization techniques, robust design optimization (RDO) has
gained popularity (Beyer and Sendhoff 2007) [17]. The three goals
formulate the robust design, i.e., reducing variance in system re-
sponse, reducing cost and bringing mean value of system response
to the target, leads naturally to a multi-objective optimization prob-
lem. In some cases, the target value for the mean is specific; in others,
the mean value is either maximized or minimized. RDO is advantageous
as it can explore the entire solution space to find themost optimum de-
sign and straightforwardly evaluate highly nonlinear problems. In the
present study, RDO is adopted for the performance based seismic design
of steel moment resisting frames.

3. Performance based robust design

Many sources of uncertainties exist in performance based seismic
design [18]. For instance, seismic hazard varies due to the attenuation
laws employed. For given seismic intensity, seismic demand parame-
ters vary from record-to-record, known as ground motion variability.
Moreover, uncertainty also exists in structural modeling owing to the
unavoidable simplifications made and assumptions established in the
numerical analysis, such as using center-line model instead of pre-
cisely modeling the panel zone; employing a 2D model instead of
considering the 3D effects; and using inaccurately estimated damping
ratio or employing inaccurate connection models.

Unlike traditional seismic design method, in which preventing fa-
tality through ensuring an acceptably low collapse probability is the
main goal, in performance based design, performance is divided into
several levels each corresponding to a seismic hazard level. FEMA
350 supplies a probability based guideline for performance based de-
sign of steel moment resisting frames, in which the ground motion
variability and the uncertainty in the structural analysis are consid-
ered explicitly. FEMA 350 considers two performance levels, immedi-
ate occupancy (IO) and collapse prevention (CP), corresponding to
50% probability of being exceeded in 50 years and 2% probability of
being exceeded in 50 years, respectively. In FEMA 350, performance
objective is satisfied probabilistically in that IO performance level
has an annual frequency of being exceeded less than 1/100, while
CP performance level has an annual frequency of being exceeded
less than 1/2500 [3].

Analogous to LRFD design, in FEMA 350, the performance objec-
tives are satisfied by demand and capacity factor design (DCFD)
method [19], instead of direct calculation of the annual frequency of
being exceeded. DCFD involves calculation of the factored demand
to the factored capacity ratio (also known as a confidence parameter),
as expressed in Eq. (1):

λ ¼ γ " γa " D
ϕ " C

: ð1Þ

With λ known, a metric named confidence level can be computed,
which quantifies the confidence of performance objective being satis-
fied in face of the uncertainties due to seismic hazard curve and other
epistemic uncertainties [19]. In FEMA 350, minimum confidence level
for IO and CP performance objective is suggested as 50% and 90%,
respectively.

In Eq. (1), only median seismic demand, D is used. This is due to
the following assumption established in FEMA 350: record to record
variability, i.e. standard deviation of logarithm value of seismic de-
mand under given seismic intensity, is a constant value of 0.3 [19].
This assumption, which eliminates the need to compute record to re-
cord variability case by case has not been validated raising the follow-
ing question: for identical median seismic demand, what is the extent
to which the seismic demand variation is affected by the design pa-
rameters? If the effect of design parameters on the variation of seis-
mic demand is significant, then for a given median seismic demand,
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one can seek for design parameters that reduce the variation of seis-
mic demand, yielding a more robust design. This potential reduction
in seismic demand variation is not evaluated previously in the
established literature and is the objective of the present manuscript.

In this manuscript, the authors apply the principles of robust
design optimization to performance based design of steel moment
resisting frames. The design variables are the steel section sizes,
while seismic demand, i.e. system response of interest, is the maxi-
mum inter-story drift. Inter-story drift is closely related to both
local and global stability, as well as P-Δ effects [20]. The mean value
of maximum inter-story drift, μdrift is considered as the safetymeasure
and the standard deviation of maximum inter-story drift, σdrift is con-
sidered as the robustness measure. For the cost measure, initial con-
struction cost, represented by steel material weight is adopted [10].
Ground motion variability, a significant contributor to seismic de-
mand variation for steel moment resisting frame [21], is treated as
the noise factor. The AISC 360 requirements, ASCE 7 requirement,
and FEMA 350 acceptance criteria are implemented as design con-
straints. The performance based robust design optimization of steel
moment resisting frame problem is expressed as follows:

Find d to minimize : W dð Þ; μdrift d; zð Þ;σdrift d; zð Þ
n o

Subject to :

AISC 360 Code Requirements;
ASCE 7 Code Requirements;
FEMA350 Acceptance Criteria : CP performance confidence level > 0:9;

IO performance confidence level > 0:5

where W is the steel material weight, d is the design parameters
(steel section types), z is the noise factor (ground motion variability).
It should be noted that, only μdrift and σdrift under 2% probability of
being exceeded in 50 years seismic hazard level are treated as design
objectives, since the consequence of exceeding CP performance is
more detrimental.

AISC 360 is employed in member detailing. The following require-
ments are imposed: (1) member strength requirement to limit mem-
ber stress; (2) strong column weak beam criteria requirement to
avoid weak story mechanism; (3) width-thickness ratio limit require-
ment to prevent buckling of the members; and (4) stability require-
ment. Furthermore, the following load combinations are considered
according to ASCE7-10:

1:4DL
1:2DLþ 1:6LLþ 0:5LLr
1:2þ 0:2SDSð ÞDLþ ρQE þ 0:5LL
0:9−0:2SDSð ÞDLþ ρQE

ð2Þ

in which DL, LL, LLr, and QE, are the dead load, live load, roof live load,
and earthquake load, respectively; SDS is the elastic response spectral
acceleration at short period; and ρ is the redundancy factor.

4. Methodology: multi-objective optimization and non-dominated
sorting genetic algorithm II

In general, a multi-objective optimization problem can be expressed
as:

Minimize : F dð Þ ¼ f 1 dð Þ; f 2 dð Þ;…; f l dð Þ½ '
Subject to : gi dð Þ≤0 i ¼ 1; :::;n ð3Þ

with f representing a single objective function, and g representing a con-
straint function. Unlike single objective optimization, the purpose of
which is to search for a single best design, multi-objective optimization
yields a family of optimum designs. When the objectives are un-
cooperative (or conflicting), a single design optimum for all objectives
does not exist in the solution space, which is represented by an

unattainable, imaginary point known as the utopia point in Fig. 1.
There generally exists a set of designs in the solution space (i.e., set
{F(d) | gi(d) ≤ 0 for all i}), which are superior to all other designs,
while within this set, no design is superior to another in all criteria.
These designs constitute a Pareto optimum set (or Pareto front), as illus-
trated in Fig. 1.

Hence, the Pareto front can be viewed as a set of designs, which
dominate all other designs. The domination relationship is defined as
follows: design B is dominated by design A, if A is superior to B in at
least one criteria (i.e., fi(d)A b fi(d)B for at least one i), and A is not in-
ferior to B in all other criteria (i.e., fi(d)A ≤ fi(d)B for all other i). If one
design is not dominated by any other designs, it belongs to the Pareto
front. A Pareto front has the following features: (1) Within the Pareto
front, no improvement is possible in one objective without worsening
other objectives. Thus, the Pareto front represents a trade-off rela-
tionship, in which objectives compete with each other. (2) All other
designs in the solution space are known as dominated designs,
which are dominated by at least one design in the Pareto front.

Various optimization methods, such as weighted sum method
[22], goal programming [23], compromise programming [24], physi-
cal programming [25], and non-dominated sorting genetic algorithm
II (NSGA-II) [26] have been proposed for solving multi-objective opti-
mization problems, a comprehensive survey of which is provided by
Marler and Arora [27]. Among the available methods, the NSGA-II
presents distinct advantages. Being a population-based optimization
method, NSGA-II operates on a group of designs rather than one de-
sign; thus, Pareto front can be acquired with a single run. Further-
more, NSGA-II is demonstrated to be capable of identifying Pareto
front designs in a computationally efficient manner [26]. For those
reasons, NSGA-II is adopted here.

5. Steel moment resisting frame case study

5.1. Prototype structure

The proposed performance based robust design optimization is
illustrated on a four-story three-bay steel moment resisting frame
assumed to be located in Los Angeles, California (Fig. 2). The two-
dimensional frame system in east–west direction is employed as il-
lustrative example, with an assumed dead load of 70 psf (3.35 kPa)
for the floor and 56 psf (2.68 kPa) for the roof including the weight
of slabs. The live load is assumed to be 40 psf (1.91 kPa) for floor
levels and 15 psf (0.72 kPa) for roof level, and the external wall
load is assumed to be 30 psf (1.44 kPa) for all levels. A572 grade
50 ksi steel is used for all beams and columns. All beams at the

f2

f1

Utopia Point

Pareto front

Solution space

B

A

Fig. 1. Pareto front in a bi-objective space (Gencturk and Elnashai, 2011).
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same floor level are grouped into the same section type, and the col-
umns of two adjacent floors symmetric with respect to the vertical
center line are grouped together (Fig. 2). This grouping results in a
total of eight section types, i.e., eight design parameters. During opti-
mization, steel sections are selected from the list of commonly used
sections in tradition steel moment resisting frame design given in
Table 1.

5.2. Ground motion uncertainty

The set of ground motions for 50%/50year and 2%/50year seismic
hazard level developed for the Los Angeles SAC project is employed
[28]. The ground motions has been scaled to match the 50%/50 year
and 2%/50 year uniform hazard spectrums through least-square min-
imization at 0.5 s, 1 s, 2 s and 4 s. The characteristics of these twenty
motions for 2%/50 seismic hazard level are shown in Table 2 with a
type D soil assumed. Based on the assumption that seismic data can
be well described with lognormal distribution, the median, 84th per-
centile, 16th percentile elastic spectrum acceleration (Sa) and spec-
trum displacement (Sd) with 5% damping are calculated as shown in
Fig. 3.

5.3. Structural model

In the established literature, four distinct analysis procedures
are available to compute seismic demand: the linear static method,
the linear dynamic method, the nonlinear static method and the
nonlinear dynamic method. Though the nonlinear dynamic method
is the most rigorous and accurate, it also is the most computationally
intensive. Nonlinear static analysis, also known as nonlinear push
over analysis, is an efficient alternative to nonlinear dynamic analysis,
in which a lateral distributed force is applied to the structure with

increasing magnitude until the target roof displacement is reached.
The displacement coefficient method in FEMA 356 and capacity spec-
trum method in ATC-40 [29, 30] are the most commonly used
nonlinear static analysis procedures [31]. Improved procedures for
displacement coefficient method and capacity spectrum method are
also provided in FEMA 440 [32]. In these methods however, the effect
of higher order modes and the force redistribution from structural
yielding are not considered. As such, the accuracy of the pushover
analysis has been a subject of criticism.

The modal pushover analysis (MPA) procedure proposed by Chopra
and Goel [33] supplies an improved accuracy compared to the pushover
analysis and is proven to be capable of predicting seismic demands sim-
ilar to the rigorous nonlinear dynamic analysis withmuch less computa-
tional effort [33]. The effort for MPA can be reduced significantly by
assuming higher order modes to be elastic without sacrificing accuracy
in a significantway [34], referred to as modifiedMPA. Due to its compu-
tational efficiency and favorable accuracy,modifiedMPA is adopted here
to calculate seismic demand.

Pushover analysis of the full frame and nonlinear dynamic analysis
of the idealized inelastic single degree of freedom system of the first
mode are performed with open system for earthquake engineering
simulation (OpenSEES). ‘nonlinearBeamColumn’ element with a strain

S 1 S 2 S 2 S 1

S 4 S 4 S 3S 3
S5

S6

S7

S8

3@20ft

N

E-W
Frame

3@20ft

15
ft

3@
13

.5
ft

3@
20

ft

a) Elevation view b) Plan view

Fig. 2. Elevation view and plan view of the example steel moment resisting frame.

Table 1
List of columns and beams.

Column Beam

W14 × 99 W14 × 211 W24 × 55 W33 × 116
W14 × 109 W14 × 233 W24 × 62 W33 × 130
W14 × 120 W14 × 257 W24 × 68 W33 × 141
W14 × 132 W14 × 283 W24 × 76 W33 × 152
W14 × 145 W14 × 311 W27 × 84 W36 × 135
W14 × 159 W14 × 342 W27 × 94 W36 × 150
W14 × 176 W14 × 370 W27 × 102 W36 × 160
W14 × 193 W14 × 398 W27 × 114 W36 × 170

Table 2
Characteristics of the ground motions at 2%/50 year seismic hazard level.

Name Record Magnitude Distance
(km)

Scale
factor

PGA (g)

LA21 1995 Kobe 6.9 3.4 1.15 1.258
LA22 1995 Kobe 6.9 3.4 1.15 0.903
LA23 1989 Loma Prieta 7 3.5 0.82 0.41
LA24 1989 Loma Prieta 7 3.5 0.82 0.464
LA25 1994 Northridge 6.7 7.5 1.29 0.852
LA26 1994 Northridge 6.7 7.5 1.29 0.925
LA27 1994 Northridge 6.7 6.4 1.61 0.909
LA28 1994 Northridge 6.7 6.4 1.61 1.304
LA29 1974 Tabas 7.4 1.2 1.08 0.793
LA30 1974 Tabas 7.4 1.2 1.08 0.973
LA31 Elysian Park (simulated) 7.1 17.5 1.43 1.271
LA32 Elysian Park (simulated) 7.1 17.5 1.43 1.164
LA33 Elysian Park (simulated) 7.1 10.7 0.97 0.767
LA34 Elysian Park (simulated) 7.1 10.7 0.97 0.668
LA35 Elysian Park (simulated) 7.1 11.2 1.1 0.973
LA36 Elysian Park (simulated) 7.1 11.2 1.1 1.079
LA37 Palos Verdes (simulated) 7.1 1.5 0.9 0.698
LA38 Palos Verdes (simulated) 7.1 1.5 0.9 0.762
LA39 Palos Verdes (simulated) 7.1 1.5 0.88 0.491
LA40 Palos Verdes (simulated) 7.1 1.5 0.88 0.613
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hardening ratio of 3% is used to simulate the columns. The nonlinearity
of the beam elements is modeled with Ibarra–Krawinkler (IK) model
[35], characterized by three strength parameters [My: effective yield
moment; Mc: capping moment (post yield strength ratio defined as
Mc/My); and residual moment: Mr = κMy], four deformation parame-
ters [θy: yield rotation; θp: pre-capping plastic rotation; θpc: post-
capping plastic rotation; and θu: ultimate plastic rotation capacity], and
one cyclic deterioration parameter (Fig. 4). The parameters for steel sec-
tions can be predictedwith regression equations provided by Lignos and
Krawinkler [36] that are expressed as functions of geometric parameters
and yield strength of the steel section. θu however, is highly dependent
on load history and difficult to determine accurately. For beams under
stepwise increasing cyclic load, θu is reported to be between 0.05 and
0.06 rad [36] and in this study, θu is assumed to be 0.06 rad. Moreover,
P-Δ effect is modeled with fictitious column approach [37].

5.4. Interpretation of the results

The formulated optimization problem is solved through NSGA-II
by evaluating 500 designs in each generation with a total number of
50 generations. The converged solution, i.e., the acquired Pareto
front of the last generation, is shown in Fig. 5. For comparison pur-
poses, Fig. 5 also depicts the feasible designs of generation 1. Since

no designs belong to Pareto front in generation 1, they are termed
as ‘dominated designs’ in the figure.

5.4.1. Relation between μdrift–cost and σdrift–cost
The design population of the initial generation and the last gener-

ation is illustrated in Fig. 5(a). As the σdrift–weight (cost) plot
(Fig. 5(b)) clearly indicates, the Pareto front designs are more robust
(smaller σdrift) than dominated designs for identical cost. For identical
robustness (σdrift), Pareto front designs are more economical than
dominated designs. From the μdrift–weight (cost) plot (Fig. 5(c)), the
Pareto front designs are observed to exhibit smaller seismic demand
(μdrift) compared to the dominated designs for identical cost, while
for designs with identical seismic demand (μdrift), the Pareto front de-
signs are more economical than the dominated designs.

In general, for given cost, both μdrift and σdrift can be greatly opti-
mized, i.e., with steel weight as 80,000 lb (36,320 kg), σdrift can be
improved from the worst case of 1.6% in dominated designs to the
best case of less than 0.6% in Pareto front, and μdrift can be improved
from the worst case of 3.7% in dominated design to the best case of
around 1.5% in Pareto front. For identical μdrift or σdrift, cost of the de-
signs can also be greatly optimized, i.e., with μdrift as 2%, steel weight
can be reduced from the worst case of 100,000 lb (45,400 kg) in
dominated designs to the best case of 71,000 lb (32,234 kg) in Pareto
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Fig. 3. Sa and Sd response spectrum for 2% 50 year seismic hazard level Los Angeles ground motions with 5% damping.

Fig. 4. Modified IK deterioration model.

169Z. Liu et al. / Journal of Constructional Steel Research 89 (2013) 165–174



front; with σdrift as 1%, steel weight can be reduced from the worst
case as 100,000 lb (45,400 kg) in dominated designs to the best
case as 60,000 lb (27,240 kg) in Pareto front.

In the first generation, designs are randomly generated and the
code-compliant designs are selected as feasible designs—similar to
the trial and error process of inexperienced designers. The implica-
tion is that though trial and error process can yield code-compliant
designs, these designs are far from being optimum. The designs
of the first generation can be improved in terms of both robustness
(σdrift) and cost as observed from Fig. 5(b) and in terms of both seis-
mic demand (μdrift) and cost as observed from Fig. 5(c).

Six designs are selected for comparison, for which the steel sec-
tions and objective function values are listed in Table 3. Designs A,

B, C and D are selected from the Pareto front, while Designs b and c
are dominated designs. Designs A and D are the lightest design and
the heaviest design in Pareto front, respectively. Designs A, B, C and
D reflect the tradeoff relationship between cost and safety: compar-
ing the four designs, the design with smaller μdrift will inevitably
cost more, and the design with less cost inevitably has larger μdrift.
With the tradeoff relationship between cost and μdrift, more informed
decision making can be achieved. In single objective optimization, po-
tential changes in safety or robustness due to an increase or decrease
of project cost are not supplied. With Pareto front, however, this in-
formation becomes readily available. For instance, comparing designs
A and C, with material weight increase from 54,792 lb (24,876 kg) to
80,361 lb (36, 484kg) (by 46.7%), the μdrift will be reduced from 3.48%
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Fig. 5. Pareto front and dominated designs.

Table 3
Steel section size and objective values of selected designs (1 lb = 0.454 kg).

Selected designs Design A Design B Design b Design C Design c Design D

Columns S1 W14 × 159 W14 × 159 W14 × 211 W14 × 211 W14 × 283 W14 × 398
S2 W14 × 193 W14 × 342 W14 × 398 W14 × 398 W14 × 370 W14 × 398
S3 W14 × 159 W14 × 159 W14 × 145 W14 × 159 W14 × 99 W14 × 193
S4 W14 × 193 W14 × 211 W14 × 193 W14 × 283 W14 × 370 W14 × 398

Beams S5 W24 × 76 W27 × 102 W24 × 68 W33 × 116 W36 × 135 W33 × 130
S6 W24 × 76 W27 × 102 W36 × 135 W33 × 116 W36 × 160 W33 × 130
S7 W24 × 55 W24 × 55 W27 × 84 W24 × 76 W24 × 55 W27 × 94
S8 W24 × 55 W24 × 55 W36 × 160 W24 × 55 W24 × 55 W24 × 55

Weight (lb) 54792 67377 79785 80361 86847 101826
μdrift 3.48 2.30 2.32 1.57 1.57 1.06
σdrift 1.37 0.83 1.06 0.58 0.83 0.50
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to 1.57% (by 54.9%). As a result, the decision maker has greater
control on risk and budget associated with the preferred design. A
risk-adverse decision maker may choose a design with smaller μdrift
at more expense, while a risk-prone decision maker may choose a de-
sign with a greater μdrift. A decision maker may also evaluate the nec-
essary budget for a project when using a Pareto front Liu [9].

5.4.2. Relation between μdrift and σdrift

The data from μdrift–σdrift plot (Fig. 5(d)) indicates that the differ-
ence in robustness (σdrift) between the Pareto front designs and the
dominated designs is not negligible. Also, the positive correlation of
μdrift and σdrift indicates that designs with a larger μdrift also have a
larger σdrift.

Comparing Pareto front designs and dominated designs, for iden-
tical μdrift, designs in the Pareto front are more robust (smaller σdrift)
than dominated designs. For instance, designs C and c have compara-
tive μdrift, while design C is more robust (σdrift of design C is 2/3 of de-
sign c), and also more economical (weight of design C is 93% of design
c). The implication of these results is that a more robust design is not
necessarily more expensive. The same relation is also observed be-
tween designs B and b. Thus, for identical μdrift, σdrift can be reduced
through adjusting design variables, and a more robust design can be
acquired.

In Fig. 6, the cumulative distribution of inter-story drift of the six
designs is plotted. From this figure, for each given inter-story drift
ratio target, the probability of not being exceeded can be read direct-
ly. Comparing designs A, B, C and D, the probability of not being
exceeded increases from designs A to D for identical inter-story
drift. Comparing designs B and b which have comparable μdrift, for
smaller inter-story drift (smaller than 2.7%), design b has larger prob-
ability of not being exceeded for identical inter-story drift. For 50%
probability of not being exceeded, design B and design b has quite
close inter-story drift, since they have close μdrift. However, the prob-
ability of not being exceeded of design B exceeds that of design b as
the inter-story drift is larger than 2.7%. The same relation between
design C and design c is also observed. Thus, for identical μdrift, in-
creasing robustness (reducing σdrift) has the benefit of increasing
safety (smaller probability of being exceeded in larger inter-story
drift range).

5.4.3. Uniformity drift ratio as a design efficiency indicator
Inter-story drift ratio for all six selected designs of twenty ground

motions is plotted in Fig. 7. For each design, the maximum inter-story
drift occurs at one or two stories for almost all ground motions,

known as weak stories. It is apparent from both Fig. 7(b) and (c)
that maximum inter-story drift of designs b and c exhibits a much
greater variance than designs B and C. Furthermore, variation of
inter-story drift between different stories of designs B and C is also
smaller than that of designs b and c. That is to say designs B and C ex-
hibit a more uniform distribution of the inter-story drift. Though de-
signs b and c are heavier than designs B and C, they are inferior
designs, as the inappropriate proportioning of stiffness and strength
makes them prone to weak story mechanism failure, i.e., failure due
to excessive inter-story drift at one or several stories.

Comparing designs A, B, C and D, the uniformity of the inter-story
drift decreases from designs D to A. With larger strength, design D
would be within its linear range, whereas design A, as the ‘weakest’
design yields even when subjected to low intensity ground motion.
After yielding, the stiffness is greatly reduced, thusly sharply increas-
ing the displacement with a slight increase in force or ground motion
intensity. The large σdrift of designs b and c is also caused by the weak
story. As observed from Fig. 7(b), the difference of inter-story drift be-
tween different stories is small for low intensity ground motion,
while the difference is greatly amplified as ground motion intensity
increases after yielding of the first story, resulting in a much larger
variation in maximum inter-story drift.

Merely considering maximum inter-story drift is not sufficient to
evaluate a design, as story-wise distribution of inter-story drift is
not reflected by maximum inter-story drift. The measure uniformity
drift ratio (UDR), defined as the ratio of maximum inter-story drift
ratio to roof displacement ratio (ratio of roof displacement to building
height), can be employed as an indicator of inter-story drift uniformi-
ty [10]. According to the definition, UDR should be a value larger than
unity, while a smaller UDR indicates a more uniform distribution of
inter-story drift.

As for identical cost, Pareto front designs will exhibit smaller μdrift,
and for identical μdrift, Pareto front designs will cost less, Pareto front
designs are more efficient than dominated designs. As a result, Pareto
front designs or almost Pareto front designs (those although are dom-
inated designs but are quite close to the Pareto front) should be
pursued. The traditional trial and error based design would most
probably result in dominated designs instead of Pareto front designs,
as Pareto front designs occupy a small portion of the solution space.
Though Pareto front can be acquired by the multi-objective optimiza-
tion method, the complex programming of optimization is not practi-
cal for practicing engineers, thus simplified method for acquiring
Pareto front designs or criteria for ensuring efficiency should be
explored.

As shown in Fig. 7(c), for design c, the fourth story is weak while
the first story is rather strong, resulting in excessive inter-story drift
in the fourth story under the case that the first story is essentially
within its linear range. Thus, maximum inter-story drift, which is al-
ways governed by the weakest story cannot reflect whether strength
or stiffness is appropriately proportioned within the building. UDR,
however can capture the distribution of strength and stiffness. Gener-
ally speaking, for given material weight, a design with more uniform
distribution of inter-story drift would most probably have smaller
maximum inter-story drift. While for several designs with identical
maximum inter-story drift, the one with inter-story drift distributed
more uniformly would be expected to distribute strength and stiff-
ness more appropriately, thus would need less material. As a result,
UDR is deemed to be a suitable indicator of design efficiency.

To test the applicability of UDR as an efficiency indicator, mean
value of UDR of the twenty ground motions for Pareto front designs
and dominated designs is calculated, as shown in Fig. 8. UDR is divid-
ed into several ranges. The general phenomenon observed is that de-
signs with smaller UDR dominate designs with larger UDR. For every
other range of UDR, regions of design are separated clearly, i.e., re-
gions of 1.3 b UDR b 1.4 and regions of 1.6 b UDR b 1.8 are not
overlapping; the same phenomenon is observed between regions of
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1.1 b UDR b 1.2 and regions of 1.3 b UDR b 1.4. Since efficient de-
signs and inefficient designs can be roughly separated with different
UDR values, UDR can effectively serve as a design efficiency indicator.

In addition, within Pareto front, designs with larger μdrift generally
have larger UDR as well. For μdrift less than 1.2%, all Pareto front de-
signs have a UDR less than 1.1, for μdrift between 1.2% and 2.5%, Pareto
front designs have a UDR between 1.1 and 1.2, and for μdrift larger
than 2.5%, Pareto front designs have a UDR between 1.2 and 1.3. For
larger μdrift, designs would be driven to the nonlinear range more se-
verely, thus resulting in larger difference in maximum inter-story
drift between stories, leading to larger UDR.

In trial and error design process, with an acquired design, de-
signers are unaware whether the design is efficient, or whether it

can be improved in terms of cost or maximum inter-story drift. As
demonstrated here, UDR can serve as the efficiency indicator. A de-
sign with UDR as large as 1.8 would be a costly design, and a design
with smaller UDR would be a more efficient design. UDR can also
serve as criterion to determine whether a design is Pareto front de-
sign. Based on distribution of UDR for each range of μdrift in Fig. 8,
the following UDR requirement for efficient designs is suggested:

UDRb1:1 for μdrift b 1:2% ;
UDRb1:2 for 1:2% b μdrift b 2:5% ;
UDRb1:3 for μdrift N 2:5% :

8
<

: ð4Þ

With such range in mind, design efficiency can be determined.
With the trial and error design process, trials can be made until a de-
sign not only meets code requirement but also satisfies the UDR re-
quirement given in Eq. (4) is found. Thus, with the use of UDR as a
guiding efficiency indicator, efficient designs can be achieved without
complex optimization. It should be noted that the UDR ranges
presented herein are applicable only for the steel frame considered
herein. Whether it can be extrapolated to steel moment resisting
frame of different stories, or even different structure types need to
be verified in future studies. Considering the benefits of appropriately
proportioning strength and stiffness, UDR requirement should be
considered as a valuable design criterion.

6. Parametric analysis

6.1. Influence of connection behavior

In this section, the results of the effect of the selected connection
model on the performance based robust optimization are evaluated.
The IKmodel employed in this research to simulate connection behavior
considers both the cyclic deterioration and post-capping behavior and
thus, it was reported to accurately predict seismic demand and capacity
[35, 36]. There are other connection models available to simulate
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nonlinear behavior of beams, however, such as the bilinear model
[11, 38], the Fouch and Shi model [39, 40], and Kishi and Chen model
[41, 42]. Of these, the bilinear model is the most simplified in its treat-
ment of the mechanics at the connection as it considers neither the cy-
clic deterioration nor post-capping behavior. Therefore, comparison of
robust design optimization results obtained using the most simplified
and the most advanced connection models (i.e. the bilinear model and
IK model) would reveal the sensitivity of the proposed methodology
to the connection model.

In our implementation of the bilinear model, a strain hardening
ratio of 3% is assumed, and in our genetic algorithm a population
size of 100 is used [10]. In this facet of our work, we overlay both
Pareto fronts obtained with the IK and bilinear models, as shown in
Fig. 9. Here, the Pareto fronts obtained from these two connection
models agree very well in that section sizes of 36 designs coincide
identically, suggesting that the dependency of the performance
based robust optimization approach on the selected connection
model is negligible.

Subsequently, it is observed that μdrift calculated using the bilinear
model was in close agreement with μdrift based upon the IK model.
The cyclic deterioration and post-capping behavior, which are not
considered within the bilinear model, are known to play an important
role in evaluating collapse capacity [35, 36]. However, for inter-story
drift values much smaller than collapse capacity (i.e., μdrift is smaller
than 3% in Fig. 10), the cyclic deterioration and post-capping behavior
only marginally influence the predicted structural behavior.

6.2. Influence of response modification factor

The response modification factor, R is the ratio of the force that
will be developed in a seismic resistant system if the system remains
elastic under design ground motion to the yielding force of the sys-
tem. Therefore, it is the reduction factor for the force determined
based upon the linear elastic analysis to estimate the force that
would occur when nonlinear behavior is considered. A larger R factor
then indicates a more dissipative system. In the case study example
discussed in Section 5 of this manuscript, the response modification
factor, R was determined as 8 according to ASCE 7 recommendations
for the special steel moment frames [1].

Here, we investigate the effect of the selected R factor on the pro-
posed robust design optimization methodology. The analysis of the
steel moment resisting frame discussed earlier is performed with
varying R values, specifically, R = 2, R = 3 and R = 12. In the genetic
algorithm, a population size of 100 is used, the results of which are
provided in Fig. 11.

As seen in Fig. 11, a larger R factor introduces a larger reduction in
the seismic force, thus posing a less strict requirement on the strength
of the system. Hence, the feasible design space for a higher R factor
encompasses the feasible design space for a lower R factor. As
shown in Fig. 11, the weight and μdrift of Pareto front solutions of
R = 8 spread within a wider range compared to that of R = 3
(Fig. 11(b)), and the weight and μdrift of Pareto front solutions of
R = 12 spread within a wider range compared to that of R = 8
(Fig. 11(c)).

The number of coinciding designs for the Pareto front solutions
with R = 3 (Fig. 11(b)) and that with R = 8 was 52, indicating that
those solutions obtained with R = 8 can satisfy a much stricter
strength requirement (R = 3). However, as the R is reduced to 2,
the Pareto front solutions that are feasible for R = 8 no longer remain
so (Fig. 11(a)), clearly indicating that no Pareto front solutions
obtained with R = 2 coincide with that obtained with R = 8. As the
feasible solution space for R = 2 is contained by that for R = 8, the
Pareto front solutions for R = 2 are dominated by that for R = 8,
i.e., for identical weight, the μdrift is larger.

7. Conclusions

In this paper, the authors detailed their performance based robust
design optimization of steel moment resisting frame, with cost, mean
value of seismic demand and standard deviation of seismic demand
the three objectives, with the ground motion variability as the noise
factor, and with steel section sizes sought to minimize the objectives.
A four-story three-bay steel moment resisting frame was used to
demonstrate the proposedmethodology, and the influence of connec-
tion behavior and response modification factors on Pareto front solu-
tions were studied.

The authors determined the use of the methodology in obtaining a
set of competing designs that are economical, safe and robust in the
form of a Pareto front, with which structural engineers and stake-
holders can make decisions informed about the tradeoffs between
these three aspects.

The Pareto front designs are found superior to dominated designs
in terms of cost, safety and robustness, compared to the traditional
trial-and-error method that is likely to yield a dominated (inefficient)
design rather than a Pareto front (efficient) design as Pareto optimal
designs only occupy a small proportion of the solution space. For
identical mean value of seismic demand, variation of seismic demand
can be reduced through adjusting design variables and a safer design
can be achieved.
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The uniformity drift ratio was deemed an effective design efficiency
indicator in that the efficient designs generally exhibited a smaller uni-
formity ratio, whereas their inefficient counterparts exhibited a larger
uniformity drift ratio. Required uniformity drift ratio for each range of
maximum inter-story drift for ensuring efficient designs was suggested.
With the suggested requirement enforced, efficient designs can be
achievedwith the trial and error process without complex optimization.

The Pareto front solution was just marginally influenced by the se-
lected connection model. The Pareto front based on R = 8, satisfied
the much stricter strength requirement with a smaller R factor
(R = 3). Pareto front solutions with a greater R factor were observed
to dominate solutions obtained with a lesser R factor.

The concepts described in this manuscript can be straightforward-
ly implemented using many other design codes. Thus, future study is
recommended to further develop this approach according to other
building codes (e.g. Eurocode). Though ground motion variability is
the dominating uncertainty in the seismic design of structures,
other uncertainties that not considered here can also cause variations
in seismic demand. Therefore, future research should involve an anal-
ysis of the connection model uncertainty, and mass and damping
ratio uncertainties as concerns our model developed here.
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