Hydrogenation with Main Group Compounds

In industry:

- In 1926, Sabatier (1912 Nobel Prize winner in chemistry) discovered amorphous metals can catalyze hydrogenations.

 Ind. Eng. Chem. 1926, 18, 1005

- From that time on, tremendous development of homogeneous hydrogenation.

Representative paper:

- Recently, earth abundant metals can perform hydrogenation.
 (Fe, Co)

- From 2005, *main group elements*.

Frustrated Lewis Pairs (FLPs)
(Not covered in this review)
(Focus on this review)

- Like an "encounter complex" stabilized by noncovalent interactions and dispersion forces that create an electric field in the pocket.
- This electric field polarizes H₂, leading to cleavage of the H-H bond.

Asymmetric Hydrogenation

Stoichiometric Reaction

Group 13 Compounds *(B, Al, Ga,)*

- **H₂** (1 atm)

 CD₂Cl₂, rt

 H₂

 B

 Ar

 H

 trans-3 (2.1)

 trans-4 (4.3)

 cis-3 (1.0)

 cis-4 (1.0)

 Ar = C₆F₅:

 Ar = C₆H₅:

 1

 2

 Ar = C₆F₅:

 cis-3 (1.0)

 trans-3 (2.1)

 trans-4 (4.3)

 cis-4 (1.0)

 See reviews:

 JACS, 2013, 135, 941.
Hydrogenation with Main Group Compounds

Dipp

- Linear allenic geometry
- Singlet carbone–borolene adduct
- Bent structure

1,2-Hydride Migration

- Dipp = 2,6-disopropylphenyl
- \(\text{H}_2 \) (4 atm) toluene, rt

Reversible Dihydrogen Activation

- **9**
- **10** = 2:1, 8 days, 100 °C

Inreversible Dihydrogen Activation

- **11**
- **12**
- **13**
- **14**
- **15**

Quantum-chemical calculations suggest a concerted, homolytic addition of \(\text{H}_2 \) across both boron atoms.

FLP-type

- 9,10-addition
- 1,2-addition
- [1,3]-H migration

DFT calculations showed an overall exothermic (\(\Delta G = 19.4 \text{ kcalmol}^{-1} \)) two-step asynchronous \(\text{H}_2 \) addition mechanism proceeding via a bridging hydride intermediate.

Chem. Eur. J. 2016, 22, 17169.
Feng Wang

hydrogenation with main group compounds

Aluminium hydride: a reversible material for hydrogen storage
- high energy density
- release hydrogen easily
- can be recharged

Reaction coordinate

JACS, 2017, 139, 2593.

DFT calculations revealed the HOMO resides primarily on the terminal carbon of the exocyclic alkene moiety, the LUMO is dominated by the Ga 4p character

ACIE, 2015, 54, 5098.
Group 14 Compounds (C, Si, Ge, Sn)

- a singlet carbene has a vacant orbital and a filled nonbonding orbital and in that respect resembles transition metal centers.
- in contrast to transition metals that act as electrophiles toward dihydrogen, these carbenes primarily behave as nucleophiles, creating a hydride-like hydrogen, which then attacks the positively polarized carbon center.

![Chemical structures and reactions](image)

- first experimentally observed activation of H₂ by a silylene;
- single-site activation of dihydrogen by a well-defined Main Group compound below room temperature (even at 0 °C);
- Thermodynamically, this H₂ activation reaction is calculated to be strongly exergonic (ΔG = -122.2 kJ mol⁻¹), in line with the experimental observation of irreversibility;
- Mechanistically, a concerted bimolecular process is suggested not only by DFT calculations, but also by the analogous reaction with HD, which yields H₂(NDipp)₂(N(NDipp)SiMe₃) as the sole product.

References

- Science, 2007, 316, 439
- JACS, 2012, 134, 6500
- ACIE, 2013, 52, 568
- JACS, 2017, 139, 8134.
hydrogenation with main group compounds

\[
\begin{align*}
\text{A} & \quad R_1 = \text{Si}(\text{TMS})_3 \\
\text{B} & \quad R_1 = \text{Si}(\text{TMS})_3, R_2 = \text{Nil-Bu} \\
\text{C} & \quad R_1 = \text{Si}(\text{TMS})_3, R_2 = \text{Nil-Bu} \\
\text{D} & \quad R_1 = \text{Si}(\text{TMS})_3, R_2 = \text{Nil-Bu}
\end{align*}
\]

Disilenes:

- **Syn-addition**
 - \(\text{lit.} 90-110 \text{ kcal mol}^{-1} \)
- **Stepwise-addition**
 - \(38.2 \text{ kcal mol}^{-1} \)
- **Anti-addition**
 - \(15.6 \text{ kcal mol}^{-1} \)

Synthesis of 41:

\[
\text{1'}\text{BuN} = \begin{array}{c}
\text{N} \\
\text{N} \\
\text{Bu}
\end{array}
\]

- **Disilene:**
 - \(x = 1, 43:44:45:46 = 60:21:10:9 \)
 - \(x = 2, 44:45:46 = 2:85:13 \)
 - \(x = 3, 45:46 = 65:35 \)

JACS, 2005, 127, 12232.

- The digerme 44 exists in equilibrium with either monomeric.
- Possible singlet diradical character of the Ge-Ge bonding of 43.

Reactivity:

- In solution: \(-10^\circ\text{C}\), solid state: \(20^\circ\text{C} (\geq 95\% \text{ yield}, 1 \text{h})\)
- Unlike 43, compound 47 did not further react with \(\text{H}_2 \) even at elevated temperatures (up to \(100^\circ\text{C}\)).
- Addition of \(\text{H}_2 \) to 47 gave the singly bridged species \(\text{L}^1\text{Ge}(\text{u-H})\text{GeH}_3 \), which then rearranged via a low activation pathway to the symmetrically hydrogenated compound \(\text{L}^1\text{HGe-GeH}_3 \) followed by rearrangement to the most stable isomer 48.
- The second addition of \(\text{H}_2 \) would result in cleavage of the Ge-Ge bond, giving \(\text{L}^1\text{GeH} \) and \(\text{L}^1\text{GeH}_3 \).
- However, this reaction was calculated to be thermodynamically unfavorable, consistent with the observed reactivity.

JACS, 2011, 133, 18622.
reaction of 49 and 51 with H_2 likely proceeded via interaction of the σ orbital of H_2 with the empty 4p orbital at the germanium atom with concomitant back donation from the germanium lone pair to the $\text{H}_2 \sigma^*$ orbital.

With 49, H-H bond cleavage gave the energetically favored product 50.

In the case of 51, the initial steps are identical; however, the bulky Ar^{Dipp} groups introduced sufficient strain such that the preferred pathway is elimination of HAr^{Dipp} along with production of monomeric $\text{GeHAr}^{\text{Dipp}}$, which then reacted with H_2 to give the final product 46.

\textit{JACS. 2009, 131, 16272.}

Why the Mechanisms of Digermyne and Distannyne Reactions with H_2 Differ So Greatly?

Further Reading: JACS, 2012, 134, 8856.
Group 15 Compounds (P)
Reversible Activation of H₂

1,4-addition
P inversion
suprafacial hydride shift

Catalytic Reaction

alkaline metals

\[\text{Ph} \quad \text{Ph} \quad \text{H₂} \quad (20 \text{ bar), THF/HMPA} \]

\[\text{cat 1 (2.5 mol%)} \]

\[\text{JACS, 1964, 86, 3750.} \quad \text{JACS, 2002, 124, 8693.} \]

\[\text{>99% conv.} \]

Conversion rates increase with metal size:
\[\text{Mg < Ca < Sr < Ba} \]
(for Ba, quantitative conversion is reached within 15 min).

ACIE. 2016, 55, 12214
hydrogenation with main group compounds

Correction: ACIE, 2017, 56, 9266.

65a. Ar = C₆H₄-4-IBu
65b. = C₆H₃-3,5-Me₂
66a. Ar = C₆H₄-4-IBu
66b. = C₆H₃-3,5-Me₂

\[
\text{H}_2 + \text{D}_2 \xrightarrow{\text{rt}, 5 \text{ min}} 2 \text{ HD}
\]

\[
\begin{align*}
\text{65b} \ (5 \text{ mol\%)} & \quad \text{H}_2 \ (1 \text{ bar}), \ d_{6}-\text{THF}, 25-80 \ ^\circ\text{C} \\
\text{65a or 66a} \ (2.5-10.0 \text{ mol\%)} & \quad 15 \text{ examples} \\
& \quad 0-98\% \text{ conv.}
\end{align*}
\]

ACIE, 2012, 51, 4452.
ACIE, 2016, 55, 4794.
ACIE, 2017, 56, 12367.

Acenine compound

\[
\begin{align*}
\text{Cat 1} (5-20 \text{ mol\%}) & \quad \text{H}_2 \ (50 \text{ bar}), \ \text{LiHMDS} \ (0.3-1.0 \text{ eq.}) \\
& \quad \text{toluene}, 50-80 \ ^\circ\text{C}
\end{align*}
\]

69-100% yield

ACIE, 2015, 54, 9542.

Important!!!

blank reaction (2.25 equiv. LiHMDS, without catalyst) cannot work!!!

ACIE, 2015, 54, 9542.
b. Stepwise mechanism

\[\text{LiH} + \text{R}^2-\text{N}-\text{R}^1 \rightarrow \text{R}^2-\text{N}-\text{R}^1 + \text{H}\] \rightarrow \text{R}^2-\text{N}-\text{R}^1 \]

(1)

(2)

Fullerene, UV light

\[\text{H}_2 \text{ (1 atm), rt} \]

4-6 MPa H\text{2}, 140-160 °C

JACS, 2009, 131, 16380.