Insurance through Blockchain: A hybrid approach

Martin Stellnberger
martin.stellnberger@gmail.com

Abstract: Since the first modern attempts to provide protection from potential financial loss after the great fire of London in 1666, the basic idea and operating procedures of insurance have not changed significantly. A number of bad-faith practices, however, such as delaying claim payments, confusing policy wordings, the use of unethical marketing techniques and opaque pricing models, have harmed the insurance industry’s reputation, resulting in it being ranked in the bottom quartile compared to other industries. This paper presents a hybrid approach to insurance by building on what has worked well while using Blockchain technologies to address some of the major shortcomings in the existing insurance model.

1. Introduction

What is insurance?

Insurance is a means of protection from the financial loss a natural person or legal entity would potentially face after a devastating event (1). The credo of “Let us all suffer a little bit so that no one has to suffer a lot” represents the cornerstone many insurance services are built on. It is this sharing of risk that protected individuals and legal entities alike from facing financial ruin and as such has added great value to the social fabric of communities.

The size of the industry

Since its beginnings, insurance has transformed into a very profitable industry earning $ 4.3 trillion (USD) in premiums in 2010 (1). However, the industry’s focus on profit maximization has created a number of undesirable knock-on effects, which are outlined in the following paragraphs.

A lack of transparency

Most notably only about 50% to 60% of the premiums are used for claim settlements (2) while Consumers are often not informed about usage of the remainder of the premiums. In addition, the reasoning behind the premium calculations is not disclosed, which prohibits customers from making informed decisions about the intrinsic fairness of a policy (2) (3).

Encouraging the purchase of unsuitable products

The insurance providers’ focus on short-term financial results has also led to aggressive advertising that often aims to sell insurance products regardless of their suitability for a customer. As a result, more risk averse customers can end up purchasing policies they may not require or even multiple policies that cover the same or a similar risk.

Questionable marketing tactics

Since it is human nature to avoid danger (4), the use of fear of an undesirable event occurring has become a very powerful marketing technique in the insurance industry. Insurance marketing campaigns often focus on reminding potential Consumers of things that could go wrong with the aim
of making the Consumer uncomfortable. Insurance products are then offered that are exactly aimed at taking away the customers’ discomfort that was created previously. While it is a good intention to remind customers about the benefits of having insurance, the actual marketing tactics that are applied are questionable at best.

Complicated, discouraging claims processes

Since paying out insurance claims is still the major cost to an insurance provider, a profit-maximization approach encourages insurance companies to be creative in dealing with these costs. Some of these creative efforts include delaying and making the claim process cumbersome or denying claim payments by referencing an ambiguous policy clause.

Claims adjustors incentivized to deny claims

The unresolved conflict of interest claims adjustors face (in having to respect the interests of the customers and the owners of the insurance company) has led to pressure favoring the owners desire for profit as claims adjustors are themselves incentivized (employed) by the owners.

Complicated product offerings

Another attempt to diversify insurance product offerings involved adding an investment component to traditional insurance products. While there may be a good value proposition for these new products, it needs to be pointed out that ‘investing’ and ‘insuring’ are two very distinct tasks that have almost nothing in common (other than belonging to the financial services industry). These new products added another layer of complexity making it even more difficult for customers to choose suitable products.

Insurance fraud – how customers revolt

All these developments in the insurance industry have not passed unnoticed by customers. According to the Insurance Information Institute, the financial impact caused by fraud now accounts for between 5 to 20 percent of the total claims costs. To make matters worse, this number is expected to increase (2). Research in the field of behavioral economics suggests that Consumers use unfair practices performed by the insurance industry as an argument to justify their own unethical behavior (5).

This paper proposes an alternative model of insurance that addresses the aforementioned issues by leveraging opportunities Blockchain (6) (7) (8) has to offer.

Further instructions

A list of the abbreviations and acronyms used in this paper is presented at the end. Formulas outlined in this paper use the structure as shown below. The information presented within cornered brackets [] shows the unit (e.g. days, hours, minutes, points, %, Currency, etc.)

\[
\text{Result} = \text{Formular expression} \quad \ldots \quad [\text{Unit of the result}]
\]

Some formulas use the expression of ‘+=’ or ‘-='.

\[
a += b \quad \ldots \quad [\text{Unit}] \quad \text{is the same as} \quad a = a + b \quad \ldots \quad [\text{Unit}]
\]

\[
a -= b \quad \ldots \quad [\text{Unit}] \quad \text{is the same as} \quad a = a - b \quad \ldots \quad [\text{Unit}]
\]
2. An alternative insurance model – Insurance Pools

A conceptual overview of the proposed insurance pool model is presented in the diagram below.

Liquidity Providers provide Fiat currency by purchasing insurance pool bonds (IPB) and depositing the bond’s principal into the insurance pool’s **Funding Account**. The Funding Account’s balance is used to fund the various insurance pool expenditures such as:

- **Pool Operators** – Responsible for maintaining and running the insurance pool
- **Safety Net Insurance** – Provides a second layer of insurance to Consumers
- **Claim Adjustors** – Handle and resolve claims logged by the Consumers
- **Suppliers** – Rectify the damage that was caused by an event
- **Cash Settlements** – In certain claim situations the Consumer is credited an agreed amount to rectify the claim-related damage themselves.

Consumers pay at an interval of their choosing (daily, weekly, fortnightly, monthly, etc.) their insurance premiums into the **Premium Holding Account**. As the name suggests this account serves the purpose of holding the consumers’ premiums until they are consumed by the insurance pool. If a consumer cancels a policy the policies unconsumed premiums are refunded from this account as well. All the funds held in this account are still ‘owned’ by the consumers.

On a daily basis, the Insurance Pool charges the consumers today’s combined premium by transferring the corresponding amount from the **Premium Holding Account** to the **Bond Holding Account**. The Bond Holding Account’s funds in turn are used to reimburse the **Liquidity Providers** for providing funds (purchasing bonds) at the bond’s maturity (principal plus yield).

Consumers can join and leave the insurance pool at their choosing. In addition, Consumers can have multiple insurance policies active in the same pool – each policy being independent from the others.

A more granular discussion of the components required by the proposed insurance pool model is presented next.
3. Working Capital (WC)

WC refers to the monetary assets of the insurance pool. These assets are available in a traditional bank account, are denominated in Fiat currency and are used to meet the insurance pool’s financial obligations.

Working Capital Balance (WC\(_{\text{Bal}}\))

WC\(_{\text{Bal}}\) refers to the account balance of this bank account at any given point in time and can only be positive.

Working Capital Expenditures (WC\(_{\text{Exp}}\))

The proposed model utilizes historic expenses to make a prediction about the insurance pool’s ‘near’ future expenses. These historical daily expenses of running the insurance pool can be calculated with ‘\(n\)’ being the number of days in the past that are considered.

\[
WC_{\text{Exp}} = \frac{\sum_0^n \text{(Insurance Pool Expenditures)}}{n} \quad \text{[Fiat Day]}
\]

In selecting an appropriate value for ‘\(n\)’ two aspects must be considered:

1. The influence of one or more significant events in the time period being considered
2. The influence of the distant past on the present.

Hence, if ‘\(n\)’ is chosen too narrowly, a substantial (or in other words costly) single claim has a disproportionate influence on WC\(_{\text{Exp}}\). On the other hand, a very broadly chosen ‘\(n\)’ places too much emphasis on the past in predicting the future (this is particularly an issue when the pool experiences strong growth or contraction phases).

WC\(_{\text{Exp}}\) accounts only for actual costs that are settled from the bank account. As a result, Locked Working Capital (WC\(_{\text{Locked}}\)) is not considered in this calculation.

Working Capital Locked (WC\(_{\text{Locked}}\))

Due to sometimes significant time gaps between claim incidents and their settlements, WC\(_{\text{Locked}}\) is used in this model to account for these future liabilities (accrued liabilities are created). The purpose of these accruals is to capture expected future expenditures in a timely fashion, allowing the model to respond more quickly to a changing environment.

\[
WC_{\text{Locked}} = \sum_0^m (\text{Estimated claim liability}_m) \quad \text{[Fiat]}
\]

‘\(m\)’ represents the total number of claims for which an accrual has been established. Note: Establishing an accrual for a claim should be considered an exception to the rule and not the default operating procedure, the exception being if

1. A single claim may result in significant financial liability for the insurance pool.
2. An event (e.g. natural disaster) causes many individual claims that may result in a significant liability for the insurance pool. Note: In this case, accruals are still created on a claim-by-claim basis (i.e. many individual accruals for a single event).

If an accrual has been established for a claim, this liability will be removed from WC\(_{\text{Locked}}\) at claim settlement.

Working Capital Time (WC\(_{\text{Time}}\))
A key metric on which the health of the insurance pool can be assessed is the duration in days $W_C Bal$ is able to cover anticipated claim payments without having any additional contributions made to it. This metric is called Working Capital Time ($W_C Time$) and can be calculated as follows:

$$W_C Time = \frac{W_C Bal - W_C Locked}{W_C Exp} \quad \text{[Day]}$$

Since $W_C Locked$ is included in this formula, $W_C Time$ can also be a negative value. This would mean that $W_C Bal$ is insufficient to cover the anticipated claims represented by $W_C Locked$ causing the insurance pool to be in debt. However, the insurance pool remains solvent as long as $W_C Bal$ is able to fund ongoing $W_C Exp$.

Working Capital Target Time ($W_C Target Time$)

$W_C Target Time$ represents the most important constant to be defined in this model for any given insurance pool. The proposed model’s single objective is to maintain its solvency by making $W_C Time$ match $W_C Target Time$ (neither more nor less).

A thorough discussion on defining the Target Time for any given insurance pool would go beyond the scope of this paper. However, independent of any particular pool category, defining the Target Time requires understanding and optimizing the relationship between Capital Costs per Unit (CCU) and Trust.

1. **Capital Costs per Unit (CCU) of Working Capital** deployed in the bank account as $W_C Bal$ is the rate of return Liquidity Providers demand as compensation for providing liquidity and represent the costs of financing the insurance pool.
2. **Trust** in the insurance pool by all its stakeholders. Trust can be defined as the extent to which the insurance pool stakeholders believe in the enduring solvency of the pool.

Balancing CCU with Trust may be difficult as these two are interdependent with each other. A selected few qualitative factors that may impact the trust in the enduring solvency of the pool are:

- Financial strength of the insurance pool
- Strength of the insurance pool community among its members. Do the insurance Consumers remain loyal to the pool if insurance premiums increase due to the misfortune of some of their fellow Consumers?
- Perceived impact of a maximum credible accident on the insurance pool
- Transparency of the operations performed by the insurance pool stakeholders
- Perceived honesty of the insurance pool stakeholders
- Legislative uncertainties and impediments imposed on the insurance operations

From a quantitative point of view, the optimum $W_C Target Time$ can be defined as the time at which the Capital Costs per Unit (CCU) are at a minimum so that the insurance pool can source its liquidity at a discount. CCU are the sum of two components:

1. **Interest ($CCU_{Interest}$)** – This represents the expected return for a near risk-free investment (the expected return for providing the capital). A benchmark for this interest rate may be government bonds or the interest on bank cash deposits (i.e. interest on near risk free investments).
2. **Risk premium (CCU_{Risk})** represents the return Liquidity Providers demand for accepting risks that are associated with their investment. The trust in the enduring solvency of the insurance pool with the qualitative factors outlined earlier (plus those that are missing) may have a significant impact on the risk premiums demanded by the Liquidity Providers.
The diagram below displays the anticipated Risk premium (CCU\text{Risk}), the Interest (CCU\text{Interest}) and the Total markup (CCU\text{Total}) as the sum of CCU\text{Risk} and CCU\text{Interest} in relation to WC\text{Time}.

The assumption for the CCU\text{Risk} component is that an increasing WC\text{Time} also causes WC\text{Bal} to grow. As a result, it can be assumed that the Liquidity Providers’ confidence in the solvency of the pool grows as greater financial strength enables the pool to withstand disruptive events more easily. Due to this perceived lower risk, Liquidity Providers may accept a lower CCU\text{Risk} in return.

The qualitative nature of the CCU\text{Risk} graph displayed above shows that Liquidity Providers are more sensitive to a change in WC\text{Time} when WC\text{Time} is low, as a change by one unit (day) causes a greater percentage change in WC\text{Bal} compared to a higher WC\text{Time} (see scenarios below).

<table>
<thead>
<tr>
<th>Scenario</th>
<th>WC\text{Time} Increase</th>
<th>WC\text{Bal} Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>from 1 to 2 days</td>
<td>grows by 100%</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>from 50 to 51 days</td>
<td>grows by 2%</td>
</tr>
</tbody>
</table>

Finally, a very high WC\text{Time} (and WC\text{Bal}) may provide Liquidity Providers with such confidence that they do not demand any risk compensation at all (CCU\text{Risk} = 0).

The Risk premium (CCU\text{Risk}) in the context of WC\text{Time} can be calculated as follows:

\[
CCU\text{Risk}(x) = a \times x^b + c \quad \text{[\%]}
\]

The interest component (CCU\text{Interest}) in relation to WC\text{Time} is considered to be a linear function in which Liquidity Providers demand a fixed daily return for providing the funds. As a result, CCU\text{Interest} is the product of the demanded daily return and the duration (WC\text{Time}):

\[
CCU\text{Interest}(x) = d \times x \quad \text{[\%]}
\]

CCU\text{Total} can be calculated as the sum of CCU\text{Risk} and CCU\text{Interest}:

\[
CCU\text{Total}(x) = CCU\text{Risk}(x) + CCU\text{Interest}(x) \quad \text{[\%]}
\]

The ideal WC\text{TargetTime} can now be calculated by finding a minimum for CCU\text{Total}:

\[
WC\text{TargetTime} = \min\left(CCU\text{Risk}(x) + CCU\text{Interest}(x)\right) \quad \text{[Day]}
\]

Mathematically, we can conclude:

\[
0 = CCU\text{Total}'(x) \\
0 = CCU\text{Risk}'(x) + CCU\text{Interest}'(x)
\]
\[0 = a \cdot b \cdot x^{b-1} + d \]

\[WC_{\text{TargetTime}} = \frac{-d}{\sqrt[\text{Day}]{a \cdot b}} \]

Demand of Working Capital (WC\text{Delta})

In comparing \(WC_{\text{TargetTime}} \) with the current \(WC_{\text{Time}} \), the demand for additional WC required can be expressed as

\[WC_{\text{Delta}} = (WC_{\text{TargetTime}} - WC_{\text{Time}}) \times WC_{\text{Exp}} \quad \text{[Fiat]} \]

A positive value for \(WC_{\text{Delta}} \) describes the demand for additional liquidity required to match \(WC_{\text{Time}} \) with \(WC_{\text{TargetTime}} \). A negative value for \(WC_{\text{Delta}} \) indicates that the insurance pool is over funded and no additional liquidity is required at this point in time.

4. Liquidity Providers and Insurance Pool Bonds (IPB)

Liquidity Providers invest in the insurance pool by

- Purchasing Insurance Pool Bonds (IPB) issued by the pool and
- Transferring the Principal of the Bond into the insurance pool’s Funding Account.

A Liquidity Provider can be any natural person of eligible age or a legal entity that is permitted to engage in commercial activity within the jurisdiction of the insurance pool’s locality.

Working Capital Transit (WC\text{Transit})

Due to a delay in a bond being issued and the corresponding principal being credited to the insurance pool’s bank account, the variable \(WC_{\text{Transit}} \) is used to capture the sum of all the IPBs’ principal in transit.

\[Bond \, B \, issued: \quad WC_{\text{Transit}} + = IPB_{\text{Principal}} \quad \text{[Fiat]} \]

\[Bond \, B \, credited: \quad WC_{\text{Transit}} - = IPB_{\text{Principal}} \quad \text{[Fiat]} \]

When the Liquidity Provider fails to deposit the principal within the Bond Payment Period, the Bond contract is voided and the corresponding \(WC_{\text{Transit}} \) is removed as well.

\[Bond \, B \, voided: \quad WC_{\text{Transit}} - = IPB_{\text{Principal}} \quad \text{[Fiat]} \]

To encourage Liquidity Providers to deposit the principal and fulfil their contractual obligations, Liquidity Providers need to provide a security valued at 10% of the value of the IPB’s principal. If a Liquidity Provider fails to deposit the principal, the ownership of the security transfers to the insurance pool. Two options are proposed to provide this security:

1. Deposit 10% of the bond’s principal into the Funding Account.
2. Reference an existing insurance pool bond
 a. Whose principal amount has already been credited
 b. That does not expire (reach maturity) within the Bond Payment Period
 c. That is currently not being used as a reference for another bond.

As stated earlier, when the principal does not get credited within the Bond Payment Period, the ownership of the referenced insurance bond transfers to the insurance pool (i.e. the
owner of the bond forfeits a percentage the bond’s principal including its yield). If the principal
is credited within the time limit, the hold on the bond is removed.

Working Capital Bond (WC\textsubscript{Bond})

Taking WC\textsubscript{Transit} into account, the actual demand for new capital (WC\textsubscript{Bond}) to be acquired by the
insurance pool through issuing bonds can be calculated as follows:

\[WC\textsubscript{Bond} = WC\textsubscript{Delta} - WC\textsubscript{Transit} \] \[\text{[Fiat]} \]

In purchasing IPBs, the following bond constraints and clauses apply to Liquidity Providers.

IPB Principal

The combined principal of all IPBs on sale is limited and defined by WC\textsubscript{Bond}. If WC\textsubscript{Bond} is zero or negative,
no bonds are available for purchase. Otherwise, Liquidity Providers can choose any desired principal
amount as long as the principal is equal to or lesser than WC\textsubscript{Bond}. In addition, Liquidity Providers can purchase a multitude of IPBs.

IPB Maturity

The maturity of any IPB is a constant and defined by WC\textsubscript{TargetTime}. No bonds with a maturity unequal to
WC\textsubscript{TargetTime} are offered.

IPB Yield (Yield to Maturity)

The actual yield Liquidity Providers can expect from a bond (IPB\textsubscript{Yield}) is the result of supply and demand
market forces. This model proposes a dynamic way of adjusting the Yield and Gradient for the bonds
on offer. An escalator will be used to illustrate the concept of adjusting the Yield and Gradient.

The properties of the escalator are:

- The number of steps on the escalator equals WC\textsubscript{Bond} (one step for every unit of Fiat currency – e.g. $10
 result in 10 steps). Figure 1 displays an escalator with 8 steps \(\Rightarrow WC\textsubscript{Bond} = 8 \).

- At the beginning, the steps are distributed evenly from the top to the bottom step just like a normal escalator
 (see Figure 1). Yield refers to the yield of the top step on the escalator (the yield of the highest selling unit of
 WC\textsubscript{Bond} on offer). Gradient describes the step-by-step decrease in yield from the top step’s yield downwards.

Figure 1

\[WC\textsubscript{Bond}: 8 \]
\[Yield: 6.00 \% \]
\[Gradient: 0.75 \% \]
• The steps are moving together at the same speed just like a normal escalator. Figure 2 displays this scenario in which the Yield (yield of the top step) moves from 6% to 7.5%. In addition, all the remaining steps’ yield has increased by the same delta of 1.5%.

• All steps on the escalator accelerate vertically at the same rate by multiplying the Yield with a Yield Acceleration Constant (YAC) on a minute by minute basis. In Figure 2, the Yield is at 7.5%. Hence, the escalator accelerates at the rate of \((1 + 7.5\%)\) multiplied by YAC.

• The height of the ground of any step represents the yield this step holds. (e.g. in Figure 2 the top step’s yield is 9%, while the bottom step’s yield is at 3% with the remaining steps distributed evenly between).

• Liquidity Providers purchase any number of steps on the escalator starting from the top downward. As a result, the combined bond’s yield (IPBYield) is the average of the steps’ yield purchased. In Figure 3, a Liquidity Provider purchased three steps. Hence, the bond’s combined yield is the average of all the steps’ yield purchased \(\frac{(7.5\% + 6.75\% + 6\%)}{3} \Rightarrow \text{IPBYield} = 6.75\%\).

• When an updated demand for liquidity is calculated by the insurance pool (new value for WC Delta and WC Bond), the escalator gets a reset with WC Bond steps being redistributed evenly from the last Yield value (before the reset) to a yield of zero. If WC Bond is zero or negative, no steps are available for purchase from the escalator. Such a reset is illustrated in Figure 4 with a new WC Bond of 12, a Yield of 5.25% (equals Yield before the reset), and the steps being redistributed equally.

Reinitialization of WC Bond, Yield and Gradient

At periodic intervals, a new demand for WC Delta is calculated by the insurance pool. This event in turn triggers a recalculation of WC Bond, Yield and Gradient which are referenced by the process of issuing new IPBs.

• First, a new value for WC Bond is calculated by using the previous formula

\[
\text{WC Bond} = \text{WC Delta} - \text{WC Transit} \quad \text{[Fiat]}
\]

• Yield (Yield of the top step) remains at the same value. If no value has been defined in the past, a value of 1% is chosen as its initial value.

• Finally, the Gradient can be recalculated by
Gradient = \frac{\text{Yield}}{\text{WC}_{\text{Bond}}} \quad [\%]

Acceleration of Yield

The **Yield** of the insurance pool **accelerates at a discrete interval of one minute**. However, this increase is executed only if WC_{Bond} exceeds a minimum threshold of 10% of WC_{Exp}.

\[
\text{Yield} = \text{Yield} \times (1 + \text{YAC} \ [\% \text{ per minute}]) \quad | \quad \text{WC}_{\text{Bond}} > \text{WC}_{\text{Exp}} \times 10\%
\]

The reasoning for this 10% threshold is twofold. First, the resources consumed on a minute-by-minute basis to increase the Yield in comparison to the outstanding WC_{Bond} volume may not justify its operations. Second, and more importantly, a small value for WC_{Bond} may not make it worthwhile to any Liquidity Provider to purchase a bond with the remaining WC_{Bond} as its principal. This would potentially cause the Yield to increase to a very high value. When a reinitialization occurs and a higher WC_{Bond} demand is on offer, a significant portion of this WC_{Bond} becomes available at an unjustifiably high Yield.

The implications in choosing an appropriate value for YAC are as follows:

1. **Double Value Time** represents the duration it would take the Yield to increase by a factor of two (i.e. to double in value). Hence, this duration determines the insurance pool’s ability to respond to a changing environment in which Liquidity Providers request a higher Yield.

\[
\text{Double Value Time} = \frac{\ln(2)}{\ln(1 + \text{YAC} \ [\% \text{ per hour}])} \quad [\text{ hours }]
\]

2. **Turnover Rate** refers to the time it would take to sell all the WC_{Bond} under the condition that Liquidity Providers’ demanded Yield remains constant. This can be perceived as the speed at which WC_{Bond} is being ‘sold’ to Liquidity Providers.

\[
\text{Turnover Rate} = \frac{1}{\text{YAC} \ [\% \text{ per hour}]} \quad [\text{ hours }]
\]

The relationship between Double Value Time and Turnover Rate, depending on YAC, is shown in the diagram below.

To obtain YAC on a per minute basis calculate
Issuing of a new Insurance Pool Bond (IPB)

The terms of a newly issued IPB are as follows:

\[
\text{IPB}_{\text{Principal}} = \text{Liquidity Providers choosing } \mid 0 < \text{IPB}_{\text{Principal}} \leq \text{WC}_{\text{Bond}} \quad \text{[Fiat]}
\]

\[
\text{IPB}_{\text{Yield}} = \text{Yield} - \frac{\text{Gradient} \times \text{IPB}_{\text{Principal}}}{2} \quad \text{[\%]}
\]

\[
\text{IPB}_{\text{Maturity}} = \text{WC}_{\text{TargetTime}}
\]

\[
\text{IPB payment deadline} = \text{Bond Payment Period} \quad \text{[hours]}
\]

\[
\text{IPB security} = \text{Crypto}_{C} \geq 0.1 \times \text{IPB}_{\text{Principal}} \quad \text{OR} \quad \text{Existing IPB}_{\text{Principal}} \geq 0.1 \times \text{IPB}_{\text{Principal}}
\]

Adjustment of WC\text{Bond} and Yield

Upon the successful issue of an IPB, WC\text{Bond} and Yield are adjusted:

\[
\text{WC}_{\text{Bond}} -= \text{IPB}_{\text{Principal}}
\]

\[
\text{Yield} -= \text{Gradient} \times \text{IPB}_{\text{Principal}}
\]

Reimbursement of Liquidity Providers

At the time an IPB matures, the IPB’s principal (IPB\text{Principal}) plus yield (IPB\text{Yield}) are transferred back to the Liquidity Provider.

\[
\text{IPB payout amount} = [\text{IPB}_{\text{Principal}} \times (1 + \text{IPB}_{\text{Yield}})] \quad \text{[Fiat]}
\]
5. Insurance Pool Consumers

Consumers can participate and get insurance coverage by subscribing to the insurance pool service. The term ‘subscription’ has been chosen deliberately since the proposed model provides a service that allows Consumers to trade their policy risk coverage (Policy_Risk) in exchange for a subscription fee (Crypto_C) on a day-by-day basis. Note: As mentioned earlier, consumers can choose the payment frequency as they are ‘pre-funding’ their insurance policy’s holding account (Premium Holding Account). From this account, all the consumers are charged the combined premium on a daily basis.

Insurance Pool Risk Assessment function

As the policy risk coverage (Policy_Risk) is different from policy to policy, an objective and quantifiable process (or formula) to compare various insurance policies with each other is required. Such a process may differ again from insurance pool to insurance pool and hence needs to be defined in the context of the insurance pool’s environment.

\[
\text{Policy_Risk} = \text{Insurance Pool Risk Assessment function } f(x_1, x_2, \ldots, x_n) \quad \text{[points]}
\]

The required function needs to meet the following criteria:

- Considers ‘n’ predefined parameters that are provided as input variables in the calculation
- Does not depend on any source of data other than the ‘n’ input variables provided
- Returns a positive integer that is greater than zero
- Provides enough granularity so that the median value for Policy_Risk returned is around 1000 points
- Provides consistent results in returning Policy_Risk values for policies that capture their relative risk to each other. Risk in this context relates to a policy’s likelihood of claim events occurring and the policy’s claim events’ combined financial impact on the insurance pool.

Some considerations in choosing input parameters are:

- Can the Consumer provide this parameter easily?
- What is the likelihood of a Consumer misinterpreting the parameter (i.e. providing the wrong information)?
- Is the parameter truly necessary or is its impact on the risk rating negligible?
- Would a Consumer feel more comfortable by providing additional information (despite its insignificant impact on the risk rating)?

The ability and ease in defining such a function provides an indication for the suitability of forming a desired insurance pool. A cumbersome and difficult formula with many input parameters may be a strong indication of an insurance pool with too broad boundaries (i.e. one pool for everything). On the other hand, a very simple formula may provide an opportunity to broaden the pool’s boundaries.

Insurance Pool’s boundaries

Further considerations in choosing the boundaries of what can get coverage and what cannot get coverage in an insurance pool are:

- As stated above, the ability to form an Insurance Pool Risk Assessment function
- Legal jurisdiction(s) the insurance pool operates in
- The diversity of the communities and individuals the insurance pool is consumed by
- The complexity in dealing with special or unique potential policies.

Cumulated Risk Points
The risk exposure of all insurance pool policies combined can be calculated as the sum of all the individual policies’ risk points (‘n’ representing the number of currently active policies in the pool).

\[
\text{Cumulated Risk} = \sum_{0}^{n} (\text{Policy Risk}_n) \quad \text{[points]}
\]

\[
\text{Cost of insurance policy to Consumer}
\]

The Consumers are charged their policy’s subscription fee in Fiat to compensate Liquidity Providers for providing their liquidity. The following steps are proposed to determine the fee that is charged to every insurance Consumer.

The calculation of the daily fee takes the following factors into account:

1. Average future costs for liquidity between today and TargetTime.

\[
\text{Daily IPB Payout}_{\text{Future}} = \sum_{0}^{\text{Target Time}} \frac{(\text{IPB Payout Amount})}{\text{Target Time}} \quad \text{[Fiat]}
\]

2. Actual costs for liquidity to be paid to Liquidity Providers today (within the next 24 hours)

\[
\text{Daily IPB Payout}_{\text{Today}} = \sum_{0}^{1} (\text{IPB Payout Amount}) \quad \text{[Fiat]}
\]

3. Current amount in the insurance pool’s Bond Holding Account. The amount of Fiat currency stored in this account should remain between 1 to 3 times the Daily IPB Payout_{Future} amount.

\[
\text{Daily IPB Payout}_{\text{Future}} \leq \text{Bond Holding Account balance} \leq 3 \times \text{Daily IPB Payout}_{\text{Future}}
\]

Calculation of final fee that is charged to the Consumers today:

As defined by the insurance pool, the consumers need to be charged the average future cost for the insurance (Daily IPB Payout_{Future}) at a minimum. This ensures that the consumers are charged an adequate premium even if no (only very few) bonds are maturing.

The final premium amount to be charged to the consumers for the current day can be calculated by:

\[
\text{Pool Fee}_{\text{Today}} = \max \left(\frac{\text{IPB Payout}_{\text{Future}}}{\text{Pool Fee}_{\text{Today}}} \right) \quad \text{[Fiat]}
\]

\[
\text{Pool Fee}_{\text{Today}} \text{ represents the total amount all insurance Consumers combined will be charged for the current day.}
\]

Today’s insurance fee per risk point:

In putting today’s Cumulated Risk [points] in ratio to Pool Fee_{Today}, a fee per risk point can be calculated by:

\[
\text{Pool Fee}_{\text{Per Risk Point}} = \frac{\text{Pool Fee}_{\text{Today}}}{\text{Cumulated Risk}} \quad \text{[Fiat/Point]}
\]

Hence, today’s subscription fee for policy ‘n’ in the insurance pool is

\[
\text{Insurance Policy Fee}_{\text{Policy n & Today}} = \text{Policy Risk}_n \times \text{Pool Fee}_{\text{Per Risk Point}} \quad \text{[Fiat]}
\]
Overflow payments

During insurance pool growth phases, the IPB Payout\textsubscript{future} will almost always exceed IPB Payout\textsubscript{today}. As a result, the funds accumulating in the Bond Holding Account would grow continuously. As a countermeasure, the excess funds in this account above the upper threshold (3 times the IPB Payout\textsubscript{future} amount) will be transferred into the Funding Account.

6. Insurance Pool Service Providers

Insurance Claim Adjustors & Legal Services

The services of Claim Adjustors are required by the insurance pool to (1) investigate, (2) make decisions and (3) settle the insurance claims raised by the Consumers. The main objective of the group of adjustors is to provide consistency in handling the claims within the insurance pool (i.e. consistency in the context of all claims being handled across all adjustors). Due to the somewhat subjective nature of making insurance claim decisions, adjustors play a key role in providing a fair insurance service to the Consumers.

Independent of any particular insurance pool, Claim Adjustors do require a platform through which they can ask for support, share information and establish additional guidelines that facilitate consistency in handling claims. In addition, Claim Adjustors are supported by a set of predefined insurance pool rules, terms and conditions they have to obey in performing their service. These guidelines are also communicated to the Consumers. Legal assistance may be required to support Claim Adjustors in settling ambiguous claims from a legal standpoint.

Claim Adjustors as well as legal service provider are compensated from the insurance pool on a claim-by-claim basis. The fee structure and compensation model for the services provided may differ from insurance pool to pool. However, and most importantly, these service providers are independent and are not incentivized to either marginalize or amplify insurance claim costs. They are incentivized in every possible way to make effective, fair and consistent decisions.

Suppliers

Claim Adjustors engage Suppliers on a claim-by-claim basis to rectify the damage caused by the claim. The Supplier’s remuneration depends on an agreement between the Supplier and the Claim Adjustor being found.

Safety Net Insurance Service

An insurance pool model needs to provide clear instructions, rules, guidelines and procedures that can be followed by the stakeholders in engaging with the insurance pool. The claims process bears a particular challenge for the insurance Pool Operators and the claims adjustors alike in creating rules and guidelines on how to deal with the infinite number of possible claim situations. Despite the insurance Pool Operators’ best efforts, the insurance pool will likely fall short in providing enough rules and guidelines as life in its very nature is too complex and decisions are often ambiguous.

To compensate for life’s gray-zones and its ambiguity, a Safety Net Insurance Service is proposed to be an integral part of the insurance pool model. The single objective of this service is to catch all those
insurance claims that should have been caught initially but fell through an unintended loophole in the insurance pool’s rules and guidelines.

Safety Net Insurance Services should not be confused with an entity that deals with appealed claims in a legal sense. If a Consumer appeals the decision made from a Claim Adjustor, it remains with the Claim Adjustor – and potentially legal assistance – to resolve the dispute.

Safety Net service providers are NOT bound by any rules or guidelines in making their decisions about insurance claims. They are empowered to do what they perceive to be the ‘right’ thing to do in a given claim. A guiding question that these individuals should ask themselves is: “If a particular case was brought to the attention of every insurance pool Consumer, would the majority of these Consumers deny or acknowledge this claim?” The only boundary that is imposed on them is a cap (e.g. up to 1% of total WC_{exp}) on the total amount they are authorized to use for settling claims that were presented to them.

Insurance Pool Operators

The insurance Pool Operators are the initiators, the executing and governing body of the insurance pool. The model suggests that these operators work under the umbrella of a legal entity (e.g. limited company; Ltd.) that is registered within the insurance pool’s environment.

This legal entity is responsible for:

- Providing the legal infrastructure in which the pool can operate
- Providing the technical infrastructure for the pool to operate in
- Monitoring, maintaining and auditing the insurance pool’s operations
- Education of insurance pool community and external stakeholders.

In order to avoid any potential conflict of interest issues that may arise as a result of the tasks and duties performed by the legal entity representing the insurance Pool Operators, the model proposes a fixed fee (e.g. x % of WC_{exp}) that is allocated to the legal entity. This fixed fee can be perceived as the overhead costs of running the insurance pool as this legal entity does not provide any direct and tangible benefits to any insurance pool Consumer.

7. Relevant Research

It is interesting to observe how small and well established corporations alike, profit and non-profit across the globe struggle to capitalize on the value of existing and freely available research. It may be the case that many of the organization’s stakeholders are aware of the information but the actual implementation and the corresponding change associated with executing on it represents the bigger obstacle.

Creating a new insurance pool offers an opportunity to consider and leverage research in addressing the technical, legislative, organizational and many other challenges that need to be overcome. An area that might be easily overlooked however is the human element. A detailed examination of the relevant research would go beyond the scope of this paper. However, a list of relevant researchers and a brief summary of their research is outlined next.

- Dan Ariely’s research (5) (9) in the field of behavioral economics might be single most important research to consider in this context. His research focuses on the irrationality in the decision making process of humans. Of particular interest are his findings in the field of unethical behavior and the underlying dynamics that influence this behavior.
• Barry Schwartz (10) and Sheena Iyengar’s (11) research on choice and its impact on human decision making is of particular importance in defining insurance services. The central line of argumentation is that some choice is better than none but providing a Consumer with too much choice causes them to feel overwhelmed and somewhat paralyzed in making decisions.

• James Surowiecki’s publication on ‘The Wisdom of Crowds’ (12) gives profound insight into the combined decision making power of crowds provided the necessary preconditions are met.

• Nobel laureate Daniel Kahneman’s prospect theory (13) makes an argument to take human’s cognitive biases into account. An important example of a cognitive bias to consider is loss-aversion – “they are more likely to act to avert a loss than to achieve a gain” (14).

8. Conclusion

In this paper an alternative model of insurance is presented. It builds on the aspects that are working well (sharing of risk among the insured) while eliminating some of the major flaws in this industry. In particular the conflict of interest between the owner of the insurance and the customers has been resolved as the concept of ownership of an insurance pool has been redefined. The insurance Pool Operators (that may be perceived as the owners) are compensated through a fixed fee and hence would only destroy trust in the pool by not honoring Consumers’ rights. Hence, claims adjustors are empowered to work with a Consumer while acting as a representative and on behalf of insurance pool community.

Safety Net insurance is intended to provide an additional layer of insurance that goes beyond the fact-driven, rule-imposed way of doing things, by reintroducing humanity back into insurance. Building on the extensive research in the field of behavioral economics, Consumers are reminded during critical moments in the claims process that they are part of a community and engaging in fraudulent behavior would harm this fragile social fabric.

In honoring the model outlined, it is very likely that only insurance products that are of value to the Consumers and solve a particular need would come into existence. In addition, the simplification of the insurance terms and rules may help Consumers to make better informed decisions about their insurance requirements.

Lastly, the insurance value proposition (value for money) should increase drastically from 50% to well above 90% as arguably the only overhead cost within the proposed model is the fixed fee to be paid to the insurance Pool Operators. Since the proposed model is a clearly defined system, the flow of money, including its rationale and operating procedures, can be verified by the community. It is the loop of disclosing information and receiving ongoing feedback from the community that builds trust and may represent the strongest argument for this new model of insurance.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiat</td>
<td>[Unit]</td>
<td>The national currency of the country the insurance pool resides in (e.g. Dollar, Euro, Yen etc.)</td>
</tr>
<tr>
<td>Bank Accounts</td>
<td>[Fiat]</td>
<td>All the insurance pools accounts represent a bank’s traditional debit account that hold the local currency (Fiat). These bank accounts have no overdraft. The pool requires the following bank accounts: Funding Account, Premium Holding Account and Bond Holding Account.</td>
</tr>
<tr>
<td>WC</td>
<td>[Fiat]</td>
<td>Stands for Working Capital and refers to the monetary assets or obligations of the insurance pool.</td>
</tr>
<tr>
<td>WC_{Bal}</td>
<td>[Fiat]</td>
<td>The balance of the WC in the Bank Account.</td>
</tr>
<tr>
<td>WC_{Locked}</td>
<td>[Fiat]</td>
<td>Working Capital that is reserved to be used for locked but not assessed and settled claims.</td>
</tr>
<tr>
<td>WC_{Exp}</td>
<td>[Fiat / Day]</td>
<td>The anticipated expenses of running the insurance pool per day.</td>
</tr>
<tr>
<td>WC_{Time}</td>
<td>[Days]</td>
<td>The duration WC_{Bal} is sufficient to cover anticipated claim payments without being topped up. This value can be negative!</td>
</tr>
<tr>
<td>WC_{Delta}</td>
<td>[Fiat]</td>
<td>The delta demand to top up WC_{Bal} to reach the desired WC_{Time}.</td>
</tr>
<tr>
<td>WC_{Bond}</td>
<td>[Fiat]</td>
<td>The volume of units on offer to be issued as bonds to Liquidity Providers.</td>
</tr>
<tr>
<td>WC_{Transit}</td>
<td>[Fiat]</td>
<td>The volume of units that are issued as bonds but the bond principal has not yet been credited to the insurance pool’s bank account.</td>
</tr>
<tr>
<td>CCU</td>
<td>CCU_{Total}</td>
<td>[Fiat</td>
</tr>
<tr>
<td>CCU_{Risk}</td>
<td>[Fiat</td>
<td>%]</td>
</tr>
<tr>
<td>CCU_{Interest}</td>
<td>[Fiat</td>
<td>%]</td>
</tr>
<tr>
<td>Yield</td>
<td>[%]</td>
<td>The yield of the highest selling unit of WC_{Bond} on offer.</td>
</tr>
<tr>
<td>YAC</td>
<td>[% / hour-minute]</td>
<td>The Yield Acceleration Constant is a constant that describes the amount by which Yield grows exponentially.</td>
</tr>
<tr>
<td>Gradient</td>
<td>[%]</td>
<td>Gradient describes the unit-by-unit decrease in yield of the WC_{Bond} units on offer starting from Yield.</td>
</tr>
<tr>
<td>IPB</td>
<td>[Fiat]</td>
<td>An Insurance Pool Bond is a means for Liquidity Providers to invest in the insurance pool.</td>
</tr>
<tr>
<td>IPB_{Principal}</td>
<td>[Fiat]</td>
<td>The IPB’s principal.</td>
</tr>
<tr>
<td>IPB_{Yield}</td>
<td>[%]</td>
<td>The IPB’s yield.</td>
</tr>
<tr>
<td>IPB Maturity</td>
<td>[Days]</td>
<td>The time after which the bond matures in days.</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>IPB Exchange Fee</td>
<td>[%]</td>
<td>The fee an owner of the IPB demands as compensation for a crypto currency exchange transaction.</td>
</tr>
<tr>
<td>IPB Trading Amount</td>
<td>[%]</td>
<td>The amount as a percentage of IPB Principal the owner of a IPB is willing to commit to in a currency exchange transaction.</td>
</tr>
<tr>
<td>Bond Payment Period</td>
<td>[h]</td>
<td>The period in hours within the IPB’s principal has to be credited to the insurance pool’s bank account.</td>
</tr>
</tbody>
</table>
References

