
Monday Morning Haskell �1

Haskell Tensor Flow Guide 

Monday Morning Haskell �2

Table of Contents
Section 1: Installing Haskell Tensor Flow.…………..3
Section 2: Overview of Files………………………….7
Section 3: Important Types in Haskell Tensor Flow..9
Section 4: Basic Example.…………………………..12  

Monday Morning Haskell �3

Section 1: Installing Haskell
Tensor Flow

In the first part of this guide, we’ll go over how to use Stack in conjunction with some
other tools in order to get the basic Tensor flow libraries up and running. You can check out the
README on the Github repository for additional assistance. I’ve performed the instructions on
both Mac and Linux. If you experience any issues with this (or any other) part of the guide, email
me at james@mondaymorninghaskell.me so I can help you and make this guide better!

First off, Tensor Flow is a Google product, and hence it depends on a number of other
Google dependencies. These dependencies are protobuf, snappy, and tensorflow
itself. If you’re on a Mac, one easy way to get these would be to clone the Haskell Tensor Flow
repository and use the tools/install_osx_dependencies script. If you’re on Linux, this
isn’t an option, so you’ll have to install these three things manually. The instructions I include are
mostly from my test run on Linux, but they mostly follow what happens in the Mac OS
instructions as well.

Installing Protobuf
The protobuf library implements Google’s data interchange format. It allows different

programs in totally different languages to communicate with each other in a sane way. In
particular, we need this so that our Haskell code can communicate with the low level C code
that Tensor Flow uses to perform all the math operations.

First, you have to retrieve the protobuf source (I’m using version 3.2.0, but be sure to check
for later versions):

>> curl -OL https://github.com/google/protobuf/releases/download/
v3.2.0/protoc-3.2.0-linux-x86_64.zip

Next, unzip it:

>> unzip protoc-3.2.0-linux-x86_64.zip -d protoc3

Now you need to move the binary executables and included headers to your path where they
can be found:

>> sudo mv protoc3/bin/* /usr/local/bin/
>> sudo mv protoc3/include/* /usr/local/include/

You’ll know you’ve succeeded if the protoc command (without any arguments) outputs
Missing input file, rather than something like command not found.

https://github.com/tensorflow/haskell
https://github.com/tensorflow/haskell
mailto:james@mondaymorninghaskell.me
https://github.com/google/protobuf/releases/download/v3.2.0/protoc-3.2.0-linux-x86_64.zip

Monday Morning Haskell �4

Installing Snappy
Snappy is a compression library. You can install it with homebrew on Mac (brew

install snappy). However, it’s also pretty painless to download and compile from source.
Follow the make instructions in the README. Then you’ll just need to move the relevant files
onto your path. Here’s the full instruction set in Linux (if you’re installing from source on Mac, it’ll
look very similar).

>> sudo apt install cmake
>> git clone https://github.com/google/snappy.git
>> git checkout tags/1.1.6
>> mkdir build && cd build
>> cmake ../
>> make
>> sudo cp ../snappy.h /usr/local/include/
>> sudo cp snappy-stubs-public.h /usr/local/include/
>> sudo cp ../snappy-sinksource.h /usr/local/include/
>> sudo cp libsnappy.so /usr/local/lib/

Install Tensor Flow
Naturally, you also have to install Tensor Flow itself. By this, I mean the low-level

machinery that actually performs all the math and builds up your graph. Whether you program in
Python or in Haskell (or any other language), you’re really just writing a Layer on top of this.
You’ll want to download the latest version for your system from Google APIs. Then unzip it, and
you’ll be able to copy the dynamic library onto your path so it can be seen. Here are the
commands from the script for installing the Mac OS dependencies:

>> curl https://storage.googleapis.com/tensorflow/libtensorflow/
libtensorflow-cpu-darwin-x86_64-1.0.0.tar.gz > libtensorflow.tar.gz
>> sudo tar zxf libtensorflow.tar.gz -C /usr/local
>> rm libtensorflow.tar.gz
>> sudo mv /usr/local/lib/libtensorflow.so /usr/local/lib/
libtensorflow.dylib
>> sudo install_name_tool -id libtensorflow.dylib /usr/local/lib/
libtensorflow.dylib

Here’s the process from scratch on Linux. Note the ldconfig command, which links the
dynamic library. You do this instead of actually changing it to a .dylib file (that concept only
exists on Mac OS).

>> curl https://storage.googleapis.com/tensorflow/libtensorflow/
libtensorflow-cpu-linux-x86_64-1.0.0.tar.gz > libtensorflow.tar.gz
>> sudo tar zxf libtensorflow.tar.gz -C /usr/local
>> sudo ldconfig

https://github.com/google/snappy.git

Monday Morning Haskell �5

Bringing Tensor Flow into Haskell with Stack
Now that you’ve got all the dependencies installed, you need to start a Haskell project with
Stack and bring the Haskell Tensor Flow library in as a dependency. The library is still in its early
stages, so this is not quite so straightforward. There are a couple early versions on Hackage,
but they don’t include a lot of important recent work. So my recommendation is to use the
bleeding edge version from Github. This guide and the blog posts that accompany it were
written from commit 4ab9cb9cf274e88eababfaba85103e3890a96afc.

To get it, we’ll use the feature of Stack that allows us to use a particular Github link and commit
as a package within our project. The repository uses a multi-package structure. This means
you’ll have to specify each individual subdirectory in the subdirs section of the definition so
that so you can access the code. All in all, you’ll want this section as a “package” in your
stack.yaml file:

- location:
 git: https://github.com/tensorflow/haskell.git
 commit: 4ab9cb9cf274e88eababfaba85103e3890a96afc
 subdirs:
 - tensorflow
 - tensorflow-ops
 - tensorflow-core-ops
 - tensorflow-logging
 - tensorflow-proto
 - tensorflow-opgen
 - tensorflow-test
 - tensorflow-mnist
 - tensorflow-mnist-input-data
 extra-dep: true

In addition to that, you also need some extra dependencies. These are essentially Haskell
bindings to some of the programs we installed earlier that don’t necessarily live within the
“resolvers” that Stackage uses. Some of these are only necessary if you want to do logging, but
it’s extremely frustrating to have to stop and figure that out in the middle of development, so I
highly recommend you start with them all.

extra-deps:
- proto-lens-protobuf-types-0.2.1.0
- snappy-0.2.0.2
- snappy-framing-0.1.1
- tensorflow-logging-0.1.0.0
- tensorflow-records-0.1.0.0
- tensorflow-records-conduit-0.1.0.0

Finally, you have to make sure you update the extra-include-dir and extra-lib-dir
fields to contain the directories where you put the header and library files for Snappy and
Tensorflow.

extra-include-dirs:
- /usr/local/include

Monday Morning Haskell �6

extra-lib-dirs:
- /usr/local/lib

For the last step, all you need to do is include the relevant dependencies in your .cabal file.
Again, I’ve included a couple things here, such as mnist and logging, that aren’t necessary
for the core. But some of the blog material will require them. Here’s what the build-depends
section looks like:

 build-depends: base >= 4.7 && < 5
 , tensorflow
 , tensorflow-ops
 , tensorflow-core-ops
 , tensorflow-logging
 , tensorflow-mnist
 , proto-lens

And that should be it! You should now be able to make a file and import the tensor flow files
without any compiler errors!

module Lib where

import TensorFlow.Core
import TensorFlow.Logging
import TensorFlow.GenOps.Core
…

Congratulations, you can now run Tensor Flow in Haskell! 

Monday Morning Haskell �7

Section 2: Overview of Files
In this section, we’ll got over the most important files in the Tensor Flow library and what
functions and types they export.

TensorFlow.Core
This module contains a lot of the most important pieces of Tensor Flow functionality. It’s a good
place to look to start. It has, for instance, many important types like the Tensor type and the
Build monad. It also has functions for actually running tensors: run and runWithFeeds.

TensorFlow.Ops
TensorFlow.Ops contains all the basic mathematical operations you’ll want to perform. For
example, you’ll find things like tensor addition, multiplication, and matrix multiplication. You’ll
also see useful conversion functions like scalar, vector, and cast.

TensorFlow.Variable
The Variable module naturally contains operations related to Tensor Flow variables.
Examples include the Variable type, initializedVariable, and the readValue function
that allows operations to be performed on variables.

TensorFlow.Session
The Session module has the Session type as well as the runSession function, which you’ll
need to actually run most Tensor Flow programs.

TensorFlow.Minimize
This module contains optimizers that you’ll use to train your algorithms. It has, for instance, the
basic gradientDescent optimizer as well as the more sophisticated adam optimizer. You’ll
generally use the minimizeWith function from this module, combined with one of the
optimizers.

TensorFlow.Logging
This module contains functionality related to logging events for Tensor Board. You’ll find
functions like logGraph, logSummary, and withEventWriter.

Monday Morning Haskell �8

TensorFlow.GenOps.Core
So this module is a little tricky. It does not exist concretely, in that the file does not live within the
repository. Hence it doesn’t actually have any documentation. The file is generated for you at
compile time by the tensorflow-opgen package.It takes all the low-level C functions that do
not have Tensor Flow specific implementations and turns them into Haskell functions you can
use.

Some of the C functions have optional arguments with default values. This makes them rather
awkward to use from a Haskell perspective, and not especially type safe. Here’s an example of
using optional parameters to call the 2D convolution function:

let conv = conv2D' convAttrs …
where
 convStridesAttr = opAttr "strides" .~ ([1,1,1,1] :: [Int64])
 paddingAttr = opAttr "padding" .~ ("SAME" :: ByteString)
 dataFormatAttr = opAttr "data_format" .~ ("NHWC" :: ByteString)
 convAttrs = convStridesAttr . paddingAttr . dataFormatAttr

These files should be enough to get you started! After a little while, you’ll get used to which files
you need to import for which tasks. The example at the end uses explicit imports, so you can
learn from that as well. 

Monday Morning Haskell �9

Section 3: Important Types in
Haskell Tensor Flow
In this section, we’ll focus on two main categories of types within Haskell Tensor Flow. First,
we’ll look at the Tensor type, and then we’ll examine the two most important monads, Build
and Session. If this section seems confusing, I encourage you to move onto Section 4, try out
some of the code examples, and THEN come back to this section after you’ve seen these types
in action.

Tensor Types
So many of the objects you will create in your Tensor Flow Graph are of type Tensor v a.
What does this mean exactly? The Tensor type is parameterized by two other types. The first
type parameter focuses on the “state” of the tensor. The second type focuses on the data that is
stored within the Tensor. We’ll start by focusing on the data parameter.

Tensors mostly store numerical values. Thus the most common types you will see for this
second type parameter are things like Float or Int64. There are a couple other types that can
show up from time to time. For instance, we can make a “summary tensor” that uses a
ByteString for its data. This byte string represents an event we can log. It is also possible to
store boolean values in tensors.

There is a decent degree of type safety with these. Most of the mathematical operations
between two tensors (add, subtract, etc.) won’t typecheck when called on tensors containing
bytestrings or boolean values. The following results in a type error:

let n1 = constant (Shape [1]) [True]
let n2 = constant (Shape [1]) [4 :: Float]
let additionNode = n1 `add` n2

— Error:
Couldn't match type ‘TensorFlow.Types.TypeError Bool’
 with ‘TensorFlow.Types.ExcludedCase’
arising from a use of ‘add’

Note that mathematical operations typically require the same underlying value type in the
tensor. For instance, the following will also not typecheck:

let n1 = constant (Shape [1]) [1 :: Int32]
let n2 = constant (Shape [1]) [4 :: Float]
let additionNode = n1 `add` n2

Monday Morning Haskell �10

You’ll need to fix this by changing the first line to use a Float instead. It can be a little tricky to
try to change datatypes mid-stream. You’ll likely have to get the values out and then re-encode
them as a new tensor.

Tensor States
Now, Tensors can also have different states of existence, and this is what the first type
parameter v indicates. There are three different states: Build, Value, and Ref. When you
construct constant tensors, they’ll be in the Build state. This refers to a tensor that cannot
change its value, but has not been rendered in the TensorFlow graph yet. Note all the following
examples will use the ScopedTypeVariables extension.

let (n1 :: Tensor Build Float) = constant (Shape [1]) [1 :: Float]

Tensors in the Value state already exist within the graph, so they are to some extent “fixed”.
When you are in the Build monad (see below), you can take any Build tensor and turn it into
a Value tensor with the render function. You can also use the renderValue function if you’re
not sure state your tensor is currently in.

let (n1 :: Tensor Build Float) = constant (Shape [1]) [1 :: Float]
(rendered :: Tensor Value Float) <- render n1

When you create placeholders, they are in the Value state, so you need to make them from
within a Build monad. Try not to get to confused at the distinction between the Build monad
and the Build tensor state!

(n3 :: Tensor Value Float) <- placeholder [1]

You can take any tensor, rendered or not, and get the core expression out of it with the expr
function. This will give you a Build tensor.

let (n1 :: Tensor Build Float) = constant (Shape [1]) [1 :: Float]
(rendered :: Tensor Value Float) <- render n1
(n3 :: Tensor Value Float) <- placeholder (Shape [1])
let (n4 :: Tensor Build Float) = expr rendered
let (n5 :: Tensor Build Float) = expr n3

The Ref state refers to tensors that have a particular state attaches to them. This typically
refers to variables. You can easily convert them to Tensor Value items with the value
function (no monad is needed).

value :: Tensor Ref a -> Tensor Value a

Unhelpfully, there are two initializedVariable functions in different modules, and their types are
different. Using TensorFlow.Ops.initializedVariable will give you a Tensor Ref a.
You can use this in operations as you would any tensor. Just note that the result will be a
Tensor Build.

Monday Morning Haskell �11

(opsVariable :: Tensor Ref Float) <-
 TensorFlow.Ops.initializedVariable 3
let (additionWithRef :: Tensor Build Float) = opsVariable `add` n1
— Can also turn this into a “value” tensor.
let (opsValue :: Tensor Value Float) = value opsVariable

On the other hand, we can also use TensorFlow.Variable.initializedVariable. This
gives something of type Variable, which wraps the tensor. You then need to use the
readValue function in order to use it in computations. My examples will use this latter
approach (mainly since it’s the first approach I found in the docs), but I think the former
approach is probably better.

(var :: Variable Float) <- TensorFlow.Variable.initializedVariable 3
let (readVar :: Tensor Build Float) = readValue var
— You’ll get a compile error if you try to add “var” directly.
let (additionWithVar :: Tensor Build Float) = readVar `add` n1

Build and Session Monads
There are two main monads you’ll be using. The Build monad is what you’ll use for actually
constructing your Tensor Flow graph. You primarily need the Build monad to store the state of
certain graph elements like placeholders and variables. Critically, you need to remember that
the Build monad encapsulates the creation of tensors of ALL states, not just those in the
Build state.

The Session monad stores the state of the Tensor Flow session. You’ll need this to run your
graph and actually get output. The session is also responsible for logging events. Note that
Session belongs to the MonadBuild class, so we can call any Build function within the
Session monad. The simple examples all do this. When you’re building a more complex model
though, it’s generally a good idea to isolate the graph building logic from the session logic. Then
you can just call the build function to lift your Build function into the Session monad.

mySimpleGraph :: Build (Tensor Build Float)
mySimpleGraph = do
 let myConstant = constant (Shape [1]) [1 :: Float]
 myVariable1 <- TensorFlow.Ops.initializedVariable 3
 myVariable2 <- TensorFlow.Ops.initializedVariable 5
 return $ myConstant `add` myVariable1 `add` myVariable2

mySession :: Session (Vector Float)
mySession = do
 graph <- build mySimpleGraph
 run graph  

Monday Morning Haskell �12

Section 4: Basic Examples
Here’s a very basic example of a Tensor Flow application, with line-by-line comments explaining
what’s happening. Hopefully this is enough to get you off the ground and familiar with the basic
concepts!

module Main where

import Control.Monad (replicateM_)
import qualified Data.Vector as Vector
import Data.Vector (Vector)

import TensorFlow.Core
 (Tensor, Value, feed, encodeTensorData, Scalar(..))
import TensorFlow.Ops
 (add, placeholder, sub, reduceSum, mul)
import TensorFlow.GenOps.Core (square)
import TensorFlow.Variable (readValue, initializedVariable, Variable)
import TensorFlow.Session (runSession, run, runWithFeeds)
import TensorFlow.Minimize (gradientDescent, minimizeWith)

— Usage of the “basicExample” function. Should result in a tuple like:
— (5, -1)
main :: IO ()
main = do
 results <- basicExample
 (Vector [1.0, 2.0, 3.0, 4.0])
 (Vector [4.0, 9.0, 14.0, 19.0])
 print results

— We’ll take two vectors (of equal size representing the inputs and
— expected outputs of a linear equation.
basicExample :: Vector Float -> Vector Float -> IO (Float, Float)
basicExample xInput yInput = runSession $ do
 — Everything below this ^^ takes place in the “Session” monad, which
 — we run with “runSession”.

 — Get the sizes of out input and expected output
 let xSize = fromIntegral $ Vector.length xInput
 let ySize = fromIntegral $ Vector.length yInput

 — Make a “weight” variable (slope of our line) with initial value 3
 (w :: Variable Float) <- initializedVariable 3
 — Make a “bias” variable (y-intercept of line) with initial value 1
 (b :: Variable Float) <- initializedVariable 1

 — Create “placeholders” with the size of our input and output
 (x :: Tensor Value Float) <- placeholder [xSize]
 (y :: Tensor Value Float) <- placeholder [ySize]

Monday Morning Haskell �13

 — Make our “model”, which multiplies the weights by the input and
 — then adds the bias. Notice we use “readValue” to use operations on
 — variables. This is our “actual output” value.
 let linear_model = ((readValue w) `mul` x) `add` (readValue b)

 — Find the difference between actual output and expected output y,
 — and then square it.
 let square_deltas = square (linear_model `sub` y)

 — Get our “loss” function by taking the reduced sum of the above,
 — then “train” our model by using the gradient descent optimizer.
 — Notice we pass our weights and bias as the parameters that change.
 let loss = reduceSum square_deltas
 trainStep <- minimizeWith (gradientDescent 0.01) loss [w,b]

 — “Train” our model, but passing our input and output values as
 — “feeds” to fill in the placeholder values.
 let trainWithFeeds = \xF yF -> runWithFeeds
 [feed x xF
 , feed y yF
]
 trainStep

 — Run this training step 1000 times. Encode our input as
 — “TensorData”
 replicateM_ 1000 $
 trainWithFeeds
 (encodeTensorData [xSize] xInput)
 (encodeTensorData [ySize] yInput))

 — “Run” our variables to see their learned values and return them
 (Scalar w_learned, Scalar b_learned) <-
 run (readValue w, readValue b)
 return (w_learned, b_learned)

