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Section 1: Installing Haskell 
Tensor Flow

In the first part of this guide, we’ll go over how to use Stack in conjunction with some 
other tools in order to get the basic Tensor flow libraries up and running. You can check out the 
README on the Github repository for additional assistance. I’ve performed the instructions on 
both Mac and Linux. If you experience any issues with this (or any other) part of the guide, email 
me at james@mondaymorninghaskell.me so I can help you and make this guide better!

First off, Tensor Flow is a Google product, and hence it depends on a number of other 
Google dependencies. These dependencies are protobuf, snappy, and tensorflow 
itself. If you’re on a Mac, one easy way to get these would be to clone the Haskell Tensor Flow 
repository and use the tools/install_osx_dependencies script. If you’re on Linux, this 
isn’t an option, so you’ll have to install these three things manually. The instructions I include are 
mostly from my test run on Linux, but they mostly follow what happens in the Mac OS 
instructions as well.

Installing Protobuf
The protobuf library implements Google’s data interchange format. It allows different 

programs in totally different languages to communicate with each other in a sane way. In 
particular, we need this so that our Haskell code can communicate with the low level C code 
that Tensor Flow uses to perform all the math operations.

First, you have to retrieve the protobuf source (I’m using version 3.2.0, but be sure to check 
for later versions):

>> curl -OL https://github.com/google/protobuf/releases/download/
v3.2.0/protoc-3.2.0-linux-x86_64.zip 

Next, unzip it:

>> unzip protoc-3.2.0-linux-x86_64.zip -d protoc3 

Now you need to move the binary executables and included headers to your path where they 
can be found:

>> sudo mv protoc3/bin/* /usr/local/bin/ 
>> sudo mv protoc3/include/* /usr/local/include/ 

You’ll know you’ve succeeded if the protoc command (without any arguments) outputs 
Missing input file, rather than something like command not found.

https://github.com/tensorflow/haskell
https://github.com/tensorflow/haskell
mailto:james@mondaymorninghaskell.me
https://github.com/google/protobuf/releases/download/v3.2.0/protoc-3.2.0-linux-x86_64.zip
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Installing Snappy
Snappy is a compression library. You can install it with homebrew on Mac (brew 

install snappy). However, it’s also pretty painless to download and compile from source. 
Follow the make instructions in the README. Then you’ll just need to move the relevant files 
onto your path. Here’s the full instruction set in Linux (if you’re installing from source on Mac, it’ll 
look very similar).

>> sudo apt install cmake 
>> git clone https://github.com/google/snappy.git 
>> git checkout tags/1.1.6 
>> mkdir build && cd build 
>> cmake ../ 
>> make 
>> sudo cp ../snappy.h /usr/local/include/ 
>> sudo cp snappy-stubs-public.h /usr/local/include/ 
>> sudo cp ../snappy-sinksource.h /usr/local/include/ 
>> sudo cp libsnappy.so /usr/local/lib/ 

Install Tensor Flow
Naturally, you also have to install Tensor Flow itself. By this, I mean the low-level 

machinery that actually performs all the math and builds up your graph. Whether you program in 
Python or in Haskell (or any other language), you’re really just writing a Layer on top of this. 
You’ll want to download the latest version for your system from Google APIs. Then unzip it, and 
you’ll be able to copy the dynamic library onto your path so it can be seen. Here are the 
commands from the script for installing the Mac OS dependencies:

>> curl https://storage.googleapis.com/tensorflow/libtensorflow/
libtensorflow-cpu-darwin-x86_64-1.0.0.tar.gz > libtensorflow.tar.gz 
>> sudo tar zxf libtensorflow.tar.gz -C /usr/local 
>> rm libtensorflow.tar.gz 
>> sudo mv /usr/local/lib/libtensorflow.so /usr/local/lib/
libtensorflow.dylib 
>> sudo install_name_tool -id libtensorflow.dylib /usr/local/lib/
libtensorflow.dylib 

Here’s the process from scratch on Linux. Note the ldconfig command, which links the 
dynamic library. You do this instead of actually changing it to a .dylib file (that concept only 
exists on Mac OS).

>> curl https://storage.googleapis.com/tensorflow/libtensorflow/
libtensorflow-cpu-linux-x86_64-1.0.0.tar.gz > libtensorflow.tar.gz 
>> sudo tar zxf libtensorflow.tar.gz -C /usr/local 
>> sudo ldconfig 

https://github.com/google/snappy.git
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Bringing Tensor Flow into Haskell with Stack
Now that you’ve got all the dependencies installed, you need to start a Haskell project with 
Stack and bring the Haskell Tensor Flow library in as a dependency. The library is still in its early 
stages, so this is not quite so straightforward. There are a couple early versions on Hackage, 
but they don’t include a lot of important recent work. So my recommendation is to use the 
bleeding edge version from Github. This guide and the blog posts that accompany it were 
written from commit 4ab9cb9cf274e88eababfaba85103e3890a96afc.

To get it, we’ll use the feature of Stack that allows us to use a particular Github link and commit 
as a package within our project. The repository uses a multi-package structure. This means 
you’ll have to specify each individual subdirectory in the subdirs section of the definition so 
that so you can access the code. All in all, you’ll want this section as a “package” in your 
stack.yaml file:

- location: 
    git: https://github.com/tensorflow/haskell.git 
    commit: 4ab9cb9cf274e88eababfaba85103e3890a96afc 
  subdirs: 
  - tensorflow 
  - tensorflow-ops 
  - tensorflow-core-ops 
  - tensorflow-logging 
  - tensorflow-proto 
  - tensorflow-opgen 
  - tensorflow-test 
  - tensorflow-mnist 
  - tensorflow-mnist-input-data 
  extra-dep: true 

In addition to that, you also need some extra dependencies. These are essentially Haskell 
bindings to some of the programs we installed earlier that don’t necessarily live within the 
“resolvers” that Stackage uses. Some of these are only necessary if you want to do logging, but 
it’s extremely frustrating to have to stop and figure that out in the middle of development, so I 
highly recommend you start with them all.

extra-deps: 
- proto-lens-protobuf-types-0.2.1.0 
- snappy-0.2.0.2 
- snappy-framing-0.1.1 
- tensorflow-logging-0.1.0.0 
- tensorflow-records-0.1.0.0 
- tensorflow-records-conduit-0.1.0.0 

Finally, you have to make sure you update the extra-include-dir and extra-lib-dir 
fields to contain the directories where you put the header and library files for Snappy and 
Tensorflow.

extra-include-dirs: 
- /usr/local/include 
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extra-lib-dirs: 
- /usr/local/lib 

For the last step, all you need to do is include the relevant dependencies in your .cabal file. 
Again, I’ve included a couple things here, such as mnist and logging, that aren’t necessary 
for the core. But some of the blog material will require them. Here’s what the build-depends 
section looks like:

  build-depends:       base >= 4.7 && < 5 
                     , tensorflow 
                     , tensorflow-ops 
                     , tensorflow-core-ops 
                     , tensorflow-logging 
                     , tensorflow-mnist 
                     , proto-lens 

And that should be it! You should now be able to make a file and import the tensor flow files 
without any compiler errors!

module Lib where 

import TensorFlow.Core 
import TensorFlow.Logging 
import TensorFlow.GenOps.Core 
… 

Congratulations, you can now run Tensor Flow in Haskell! 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Section 2: Overview of Files
In this section, we’ll got over the most important files in the Tensor Flow library and what 
functions and types they export. 

TensorFlow.Core
This module contains a lot of the most important pieces of Tensor Flow functionality. It’s a good 
place to look to start. It has, for instance, many important types like the Tensor type and the 
Build monad. It also has functions for actually running tensors: run and runWithFeeds.

TensorFlow.Ops
TensorFlow.Ops contains all the basic mathematical operations you’ll want to perform. For 
example, you’ll find things like tensor addition, multiplication, and matrix multiplication. You’ll 
also see useful conversion functions like scalar, vector, and cast. 

TensorFlow.Variable
The Variable module naturally contains operations related to Tensor Flow variables. 
Examples include the Variable type, initializedVariable, and the readValue function 
that allows operations to be performed on variables.

TensorFlow.Session
The Session module has the Session type as well as the runSession function, which you’ll 
need to actually run most Tensor Flow programs.

TensorFlow.Minimize
This module contains optimizers that you’ll use to train your algorithms. It has, for instance, the 
basic gradientDescent optimizer as well as the more sophisticated adam optimizer. You’ll 
generally use the minimizeWith function from this module, combined with one of the 
optimizers.

TensorFlow.Logging
This module contains functionality related to logging events for Tensor Board. You’ll find 
functions like logGraph, logSummary, and withEventWriter.
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TensorFlow.GenOps.Core
So this module is a little tricky. It does not exist concretely, in that the file does not live within the 
repository. Hence it doesn’t actually have any documentation. The file is generated for you at 
compile time by the tensorflow-opgen package.It takes all the low-level C functions that do 
not have Tensor Flow specific implementations and turns them into Haskell functions you can 
use.

Some of the C functions have optional arguments with default values. This makes them rather 
awkward to use from a Haskell perspective, and not especially type safe. Here’s an example of 
using optional parameters to call the 2D convolution function:

let conv = conv2D' convAttrs … 
where 
  convStridesAttr = opAttr "strides" .~ ([1,1,1,1] :: [Int64]) 
  paddingAttr = opAttr "padding" .~ ("SAME" :: ByteString) 
  dataFormatAttr = opAttr "data_format" .~ ("NHWC" :: ByteString) 
  convAttrs = convStridesAttr . paddingAttr . dataFormatAttr 

These files should be enough to get you started! After a little while, you’ll get used to which files 
you need to import for which tasks. The example at the end uses explicit imports, so you can 
learn from that as well. 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Section 3: Important Types in 
Haskell Tensor Flow
In this section, we’ll focus on two main categories of types within Haskell Tensor Flow. First, 
we’ll look at the Tensor type, and then we’ll examine the two most important monads, Build 
and Session. If this section seems confusing, I encourage you to move onto Section 4, try out 
some of the code examples, and THEN come back to this section after you’ve seen these types 
in action.

Tensor Types
So many of the objects you will create in your Tensor Flow Graph are of type Tensor v a. 
What does this mean exactly? The Tensor type is parameterized by two other types. The first 
type parameter focuses on the “state” of the tensor. The second type focuses on the data that is 
stored within the Tensor. We’ll start by focusing on the data parameter.

Tensors mostly store numerical values. Thus the most common types you will see for this 
second type parameter are things like Float or Int64. There are a couple other types that can 
show up from time to time. For instance, we can make a “summary tensor” that uses a 
ByteString for its data. This byte string represents an event we can log. It is also possible to 
store boolean values in tensors.

There is a decent degree of type safety with these. Most of the mathematical operations 
between two tensors (add, subtract, etc.) won’t typecheck when called on tensors containing 
bytestrings or boolean values. The following results in a type error:

let n1 = constant (Shape [1]) [True] 
let n2 = constant (Shape [1]) [4 :: Float] 
let additionNode = n1 `add` n2 

— Error: 
Couldn't match type ‘TensorFlow.Types.TypeError Bool’ 
                     with ‘TensorFlow.Types.ExcludedCase’ 
arising from a use of ‘add’ 

Note that mathematical operations typically require the same underlying value type in the 
tensor. For instance, the following will also not typecheck:

let n1 = constant (Shape [1]) [1 :: Int32] 
let n2 = constant (Shape [1]) [4 :: Float] 
let additionNode = n1 `add` n2 
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You’ll need to fix this by changing the first line to use a Float instead. It can be a little tricky to 
try to change datatypes mid-stream. You’ll likely have to get the values out and then re-encode 
them as a new tensor.

Tensor States
Now, Tensors can also have different states of existence, and this is what the first type 
parameter v indicates. There are three different states: Build, Value, and Ref. When you 
construct constant tensors, they’ll be in the Build state. This refers to a tensor that cannot 
change its value, but has not been rendered in the TensorFlow graph yet. Note all the following 
examples will use the ScopedTypeVariables extension.

let (n1 :: Tensor Build Float) = constant (Shape [1]) [1 :: Float] 

Tensors in the Value state already exist within the graph, so they are to some extent “fixed”. 
When you are in the Build monad (see below), you can take any Build tensor and turn it into 
a Value tensor with the render function. You can also use the renderValue function if you’re 
not sure state your tensor is currently in.

let (n1 :: Tensor Build Float) = constant (Shape [1]) [1 :: Float] 
(rendered :: Tensor Value Float) <- render n1 

When you create placeholders, they are in the Value state, so you need to make them from 
within a Build monad. Try not to get to confused at the distinction between the Build monad 
and the Build tensor state!

(n3 :: Tensor Value Float) <- placeholder [1] 

You can take any tensor, rendered or not, and get the core expression out of it with the expr 
function. This will give you a Build tensor.

let (n1 :: Tensor Build Float) = constant (Shape [1]) [1 :: Float] 
(rendered :: Tensor Value Float) <- render n1 
(n3 :: Tensor Value Float) <- placeholder (Shape [1]) 
let (n4 :: Tensor Build Float) = expr rendered 
let (n5 :: Tensor Build Float) = expr n3 

The Ref state refers to tensors that have a particular state attaches to them. This typically 
refers to variables. You can easily convert them to Tensor Value items with the value 
function (no monad is needed).

value :: Tensor Ref a -> Tensor Value a 

Unhelpfully, there are two initializedVariable functions in different modules, and their types are 
different. Using TensorFlow.Ops.initializedVariable will give you a Tensor Ref a. 
You can use this in operations as you would any tensor. Just note that the result will be a 
Tensor Build.
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(opsVariable :: Tensor Ref Float) <-      
  TensorFlow.Ops.initializedVariable 3 
let (additionWithRef :: Tensor Build Float) = opsVariable `add` n1 
— Can also turn this into a “value” tensor. 
let (opsValue :: Tensor Value Float) = value opsVariable 

On the other hand, we can also use TensorFlow.Variable.initializedVariable. This 
gives something of type Variable, which wraps the tensor. You then need to use the 
readValue function in order to use it in computations. My examples will use this latter 
approach (mainly since it’s the first approach I found in the docs), but I think the former 
approach is probably better.

(var :: Variable Float) <- TensorFlow.Variable.initializedVariable 3 
let (readVar :: Tensor Build Float) = readValue var 
— You’ll get a compile error if you try to add “var” directly. 
let (additionWithVar :: Tensor Build Float) = readVar `add` n1 

Build and Session Monads
There are two main monads you’ll be using. The Build monad is what you’ll use for actually 
constructing your Tensor Flow graph. You primarily need the Build monad to store the state of 
certain graph elements like placeholders and variables. Critically, you need to remember that 
the Build monad encapsulates the creation of tensors of ALL states, not just those in the 
Build state.

The Session monad stores the state of the Tensor Flow session. You’ll need this to run your 
graph and actually get output. The session is also responsible for logging events. Note that 
Session belongs to the MonadBuild class, so we can call any Build function within the 
Session monad. The simple examples all do this. When you’re building a more complex model 
though, it’s generally a good idea to isolate the graph building logic from the session logic. Then 
you can just call the build function to lift your Build function into the Session monad.

mySimpleGraph :: Build (Tensor Build Float) 
mySimpleGraph = do 
  let myConstant = constant (Shape [1]) [1 :: Float] 
  myVariable1 <- TensorFlow.Ops.initializedVariable 3 
  myVariable2 <- TensorFlow.Ops.initializedVariable 5 
  return $ myConstant `add` myVariable1 `add` myVariable2 

mySession :: Session (Vector Float) 
mySession = do 
  graph <- build mySimpleGraph 
  run graph  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Section 4: Basic Examples
Here’s a very basic example of a Tensor Flow application, with line-by-line comments explaining 
what’s happening. Hopefully this is enough to get you off the ground and familiar with the basic 
concepts!

module Main where 

import Control.Monad (replicateM_) 
import qualified Data.Vector as Vector 
import Data.Vector (Vector) 

import TensorFlow.Core  
  (Tensor, Value, feed, encodeTensorData, Scalar(..)) 
import TensorFlow.Ops  
  (add, placeholder, sub, reduceSum, mul) 
import TensorFlow.GenOps.Core (square) 
import TensorFlow.Variable (readValue, initializedVariable, Variable) 
import TensorFlow.Session (runSession, run, runWithFeeds) 
import TensorFlow.Minimize (gradientDescent, minimizeWith) 

— Usage of the “basicExample” function. Should result in a tuple like: 
— (5, -1) 
main :: IO () 
main = do 
  results <- basicExample  
    (Vector [1.0, 2.0, 3.0, 4.0])  
    (Vector [4.0, 9.0, 14.0, 19.0]) 
  print results 

— We’ll take two vectors (of equal size representing the inputs and 
— expected outputs of a linear equation. 
basicExample :: Vector Float -> Vector Float -> IO (Float, Float) 
basicExample xInput yInput = runSession $ do 
  — Everything below this ^^ takes place in the “Session” monad, which  
  — we run with “runSession”. 

  — Get the sizes of out input and expected output 
  let xSize = fromIntegral $ Vector.length xInput 
  let ySize = fromIntegral $ Vector.length yInput 

  — Make a “weight” variable (slope of our line) with initial value 3 
  (w :: Variable Float) <- initializedVariable 3 
  — Make a “bias” variable (y-intercept of line) with initial value 1 
  (b :: Variable Float) <- initializedVariable 1 

  — Create “placeholders” with the size of our input and output 
  (x :: Tensor Value Float) <- placeholder [xSize] 
  (y :: Tensor Value Float) <- placeholder [ySize] 
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  — Make our “model”, which multiplies the weights by the input and 
  — then adds the bias. Notice we use “readValue” to use operations on 
  — variables. This is our “actual output” value. 
  let linear_model = ((readValue w) `mul` x) `add` (readValue b) 

  — Find the difference between actual output and expected output y, 
  — and then square it. 
  let square_deltas = square (linear_model `sub` y) 

  — Get our “loss” function by taking the reduced sum of the above, 
  — then “train” our model by using the gradient descent optimizer. 
  — Notice we pass our weights and bias as the parameters that change. 
  let loss = reduceSum square_deltas 
  trainStep <- minimizeWith (gradientDescent 0.01) loss [w,b]  
   
  — “Train” our model, but passing our input and output values as 
  — “feeds” to fill in the placeholder values. 
  let trainWithFeeds = \xF yF -> runWithFeeds 
        [ feed x xF 
        , feed y yF 
        ] 
        trainStep 

  — Run this training step 1000 times. Encode our input as 
  — “TensorData” 
  replicateM_ 1000 $ 
    trainWithFeeds  
      (encodeTensorData [xSize] xInput)  
      (encodeTensorData [ySize] yInput)) 

  — “Run” our variables to see their learned values and return them 
  (Scalar w_learned, Scalar b_learned) <-  
    run (readValue w, readValue b) 
  return (w_learned, b_learned) 


