H₂ Global Warming Potential

Fabien Paulot NOAA Geophysical Fluid Dynamics Laboratory

H₂ is not a greenhouse gas but its oxidation perturbs the Earth's radiative budget

H₂ is not a greenhouse gas but its oxidation perturbs the Earth's radiative budget

- H₂ oxidation increases CH₄ lifetime and produces stratospheric H₂O and O₃
- Chemistry is well understood (Derwent 2001)

H₂ is a lot like CH₄ from a chemical standpoint

- H₂/CH₄ oxidation increases CH₄ lifetime and produces stratospheric H₂O and O₃
- O₃ and stratospheric H₂O
 increase CH₄ forcing by 45%
 (AR6)
- Climate impact of H₂/CH₄ depends on chemical conditions

H_2 -CH₄ feedback in action

replaced by H_{2} (500 Tg/yr)

"Chemical" penalty due to H_2 oxidation by OH

Bertagni (2022)

Unlike CH₄, H₂ has a large non-atmospheric sink

- H₂/CH₄ oxidation increases CH₄ lifetime and produces stratospheric H₂O and O₃
- Climate impact of H₂/CH₄ depends on chemical conditions
- Soil sink moderates the radiative impact of H₂

Estimate of H₂ GWP100

Derwent (2001, 2020, 2022)	3.3 - 5.6 (no including stratospheric water) 8 +/- 2
Hauglustaine (2022), Paulot (2021)	12.8
Warwick (2022)	10.9
CICERO (multi-model, preliminary)	12.4

H₂ impact decreases with time

(a) GWP Based Equivalent Emissions (%)											
	15.0	167		63	40	24	20	12		1	
	15.0 -	-07	55	05	40	24	20	12		-	
	10.0 -		59	40	25	15	13	7.7		1	C
e (%)	7.0 -	72	40	28	17	10	8.8	5.2	1707	10/1 2	7
age Rati	5.0 -	51	28	19	12	7.3	6.1	3.7	+-0	מאב ואמר	5
Leak	3.0 -	30	17	11	7.2	4.3	3.6	2.1	1	LCan	(11)
	1.0 -	9.8	5.5	3.7	2.3	1.4	1.2	0.7			1
	0.1 -	1.0	0.5	0.4	0.2	0.1	0.1	0.07			C
		~	20	20	40	00	200	200			
Time Horizon (yr)											

	(c) GWP Based Emissions (%) - Blue 60%							
	15.0 -				284	187	164	112
	10.0 -		331	266	192	131	116	83
e (%)	7.0 -	279	235	191	141	99	89	67
ige Rate	5.0 -	205	174	143	108	79	72	56
Leaka	3.0 -	134	115	97	77	59	55	46
	1.0 -	65	59	53	46	40	39	36
	0.1 -	35	34	33	33	32	32	32
		~	20	20	40	80	100	200
		Time Horizon (yr)						

Hauglustaine

(2022)

Estimate of H₂ GWP100

Derwent (2001, 2020, 2022)	3.3 - 5.6 (no including stratospheric water)
Hauglustaine (2022), Paulot (2021)	12.8
Warwick (2022)	10.9
CICERO (multi-model, preliminary)	12.4

Differences between estimates can be ascribed to:

- a) Experimental setup (location of H_2 perturbation, chemical environment)
- b) Model representation (CH_4 feedback, radiative transfer)
- c) <u>Representation of H₂ biogeochemical cycle</u>

H₂ present-day sources/sinks are not well constrained

Arrigoni (2022)

Very few soil uptake measurements

- ⇒ Soil sink is used as a tuning knob to match atmospheric observations based on prescribed source inventory
- ⇒ Representation of H₂ in global models is largely **based upon circa 2000s** knowledge

Faster soil sink

- ⇒ a lower fraction of H_2 is oxidized by OH
- → lower climate impact for increasing H₂ emissions