SIG-1191™: A novel hydrating cosmetic functional ingredient (CFI) for suborbital hyperpigmentation (under eye dark circles)

José R. Fernández1, Karl Rouzard1, Michael Voronkov1, Jason Healy1, Kristen L. Huber1, Corey Webb1, Jeffry B. Stock1,2
Maxwell Stock1, Joel S. Gordon1, Eduardo Pérez1
1Signum Dermalogix, 133 Wall Street, Princeton, NJ; 2Princeton University, Department of Molecular Biology, Princeton, NJ

Abstract

The appearance of dark circles around the eyes is due in part to the lack of hydration and accumulation of heme, which is pro-oxidative and pro-inflammatory. Isopentylisocitrate (IPIC) compounds have been shown to regulate the responses of inflammatory cells and human dermal microvascular endothelial cells (HDMECs) as well as through the skin and the production of free radicals and inflammation. SIG-1191™ dose-dependently stimulates HO-1 gene and protein expression in both human dermal microvascular endothelial cells (HDMECs) as well as keratinocytes and fibroblasts of 3D skin equivalents. Altogether, these studies demonstrate SIG-1191™ is a novel CFI that potentially increases microvascular heme metabolism by increasing HO-1 and possesses antioxidant, anti-inflammatory and hydrating properties to help reduce the appearance of dark circles under the eye.

Fig 1. Suborbital hyperpigmentation (aka dark circles)

![Image](image1.png)

Excessive pigmentation in the suborbital skin is caused by post-inflammatory hyperpigmentation, heme accumulation and/or triggered by environmental exposure to UV light, leading to release pro-inflammatory cytokines and absorption of melanin pigment. Heme pigment produced after blood leakage is observed and is regulated by HO-1.

Fig 2. SIG-1191™ increases keratinocyte AQ3P gene and protein expression

![Image](image2.png)

(A) Human Epidermal Keratinocytes were cultured for 24 hours with 10µM SIG-1191™. Total RNA was extracted and qPCR performed for human aquaporin-3 (AQ3P) gene expression using GAPDH gene as internal control. (B) Epiderm-FTM 3D skin cultures were typically exposed to SIG-1191™ for 7 days and harvested for western blot analysis.

Fig 3. SIG-1191™ stimulates antioxidant activity in dermal fibroblasts

![Image](image3.png)

Primary Human Dermal Fibroblasts (HDFs) were incubated with SIG-1191™ (≤10µM) for 3 hours. Control cells received vehicle-only. Intracellular oxidative activity was determined using DCFH-DA inhibitor and hydrogen peroxide (0.25 mM) as inducer of oxidative stress.

Fig 4. SIG-1191™ inhibits UBV-induced cytokinines in keratinocytes

![Image](image4.png)

Primary Human Epidermal Keratinocytes (KCs) were seeded in 24-well plates and cultured for 24 hours at 37°C and 5% CO₂ before treatments. Cells were cultured with SIG-1191™ (0.3-3µM) for 6 hours. The medium was removed, replaced with PBS and cells were irradiated with 25 µJ/cm² UBV. Medium was replaced and supernatants were collected after 24 hours and analyzed by ELISA for IL-6 and TNFα protein levels. *p<0.05 by ANOVA test compared with UBV irradiated cells.

Fig 5. SIG-1191™ increases HO-1 expression in microvascular endothelial cells

![Image](image5.png)

Human Dermal Microvascular Endothelial Cells (HDMECs) were seeded in 6-well plates and pre-cultured for 24 hours at 37°C and 5% CO₂ before treatments. SIG-1191™ (0.3-3µM) was added to culture media and incubated for an additional 24 hours. Total RNA and protein was extracted for qPCR (A) or western blot analysis (B) for human Heme Oxygenase-1 (HO-1) gene expression using GAPDH gene or protein as internal controls. *p<0.05; **p<0.01 by ANOVA test compared with untreated cells as control.

Fig 6. SIG-1191™ increases HO-1 expression in 3D reconstituted human skin cultures

![Image](image6.png)

(A) Reconstituted Human Skin cultured at the air-liquid interface (Epiderm-FTM MatTek Corp.) were topically treated with SIG-1191™ formulated in a gel for 24 hours and total RNA was extracted for qPCR analysis of HO-1 and IL-6 gene expression using GAPDH gene as internal control. (B) Cultures were treated with SIG-1191™ formulated in water and analyzed for HO-1 protein expression using GAPDH protein as internal control. *p<0.05 by ANOVA test compared with untreated cells as control.

Fig 7. IHC demonstrates SIG-1191™ promotes HO-1 production in 3D human skin model

![Image](image7.png)

EpiDerm-FTM air-liquid interface cultures were typically treated with 0.25-0.5 % (w/v) of SIG-1191™ for 24 hours. Tissues were subjected to Haematoxylin and Eosin (H&E) staining and immunohistochemistry was performed with anti-HO-1, anti-mouse ALEXAFlour-488 antibodies. HO-1 antibody staining localized to basal epidermal layer and partially to the lowest superbasal layer, predominantly restricted to the cell nucleus in untreated and vehicle exposed cultures. Treatment with SIG-1191™ increased in an apparent dose dependent manner the intensity and distribution of HO-1 staining. Original magnification: ×400.

Summary/Conclusions

- SIG-1191™ potentially targets skin hydration and aging by modulating Aquaporin-3 (AQ3P) expression in both monolayer keratinocytes and 3D skin equivalent cultures.
- SIG-1191™ demonstrates antioxidant and anti-inflammatory properties in vitro reducing intracellular oxidative radicals in human dermal fibroblasts and UBV-induced pro-inflammatory cytokine production in epidermal keratinocytes.
- Results suggest SIG-1191™ mitigates skin hyperpigmentation affected by heme pigment by increasing Heme oxygenase-1 (HO-1) gene and protein expression as shown in both monolayer dermal microvascular endothelial cells and 3D skin equivalent cultures.
- In conclusion, these results demonstrate that SIG-1191™ is a novel cosmetic ingredient that potentially promotes skin hydration and reduces suborbital hyperpigmentation by increasing Aquaporin-3 and Heme oxygenase-1 levels and through its anti-inflammatory properties.