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Abstract

The weak gravity conjecture suggests that, in a self-consistent theory of quantum gravity, the strength

of gravity is bounded from above by the strengths of the various gauge forces in the theory. In particular,

this intriguing conjecture asserts that in a theory describing a U(1) gauge field coupled consistently

to gravity, there must exist a particle whose proper mass is bounded (in Planck units) by its charge:

m/mP < q. This beautiful and remarkably compact conjecture has attracted the attention of physicists

and mathematicians over the last decade. It should be emphasized, however, that despite the fact that

there are numerous examples from field theory and string theory that support the conjecture, we still lack

a general proof of its validity. In the present Letter we prove that the weak gravity conjecture (and, in

particular, the mass-charge upper bound m/mP < q) can be inferred directly from Bekenstein’s generalized

second law of thermodynamics, a law which is widely believed to reflect a fundamental aspect of the elusive

theory of quantum gravity.
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It is widely believed that string theory may provide a self-consistent description of the elusive

theory of quantum gravity. However, the predictive power of the theory seems to be restricted by

its permissive nature [1]: there are simply too many semi-classically consistent theories of gravity

that arise in string theory.

In order to distinguish the landscape of consistent theories of gravity from the swampland

of low-energy effective theories which cannot be completed to a full theory of quantum gravity,

Arkani-Hamed, Motl, Nicolis, and Vafa [1] have proposed the intriguing “weak gravity conjecture”

as a very simple and powerful constraint on the possible gauge theories that could arise from a

self-consistent quantum theory of gravity. In its simplest form, this highly interesting conjecture

asserts that in a theory describing a U(1) gauge field coupled consistently to gravity, there must

exist at least one state (particle) whose proper mass is bounded from above by its charge:

m/mP < q , (1)

where mP ≡
√

~c/G is the fundamental Planck mass [2, 3].

As originally discussed in [1], a violation of the weak gravity conjecture (1) in a theory describing

a U(1) gauge field coupled to gravity would imply the absolute stability of extremal black holes in

this theory. Since entropic arguments suggest that stable black-hole remnants are pathological in

a quantum theory of gravity [4–6], it has been asserted in [1] that the mass-charge relation (1) is

mandatory in any self-consistent theory of quantum gravity [7].

The elegant and remarkably compact weak-gravity conjecture (1) has attracted the attention of

physicists and mathematicians over the last decade (see [8–14] and references therein). However, it

is important to emphasize that despite the fact that there are numerous examples from field theory

and string theory that support the conjecture [1, 8–14], we still lack a general proof of its validity.

One naturally wonders: where does the conjectured weak gravity bound m/q < 1 come from?

It is not clear how to derive the suggested mass-charge relation (1) directly from microscopic

quantum considerations. In particular, microscopic physics seems to afford no special status to the

dimensionless mass-to-charge ratio m/q of fundamental fields.

It should be emphasized that the weak gravity conjecture is expected to characterize gauge field

theories in a self-consistent quantum theory of gravity [1]. This fact suggests that a derivation of

the conjectured mass-charge relation (1), which quantify the weak gravity principle, may require

use of the yet unknown quantum theory of gravity. This conclusion, if true, may seem as bad

news for our physical aspirations to provide a general proof of the weak gravity bound m/q < 1.

But we need not lose heart – it is widely believed [15] that Bekenstein’s generalized second law
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of thermodynamics [6, 16], and the closely related concept of black-hole entropy (which combines

together all three fundamental constants of nature into one simple formula SBH = kBc
3A/4G~

[6, 17]), reflect a fundamental aspect of any self-consistent quantum theory of gravity.

Interestingly, and most importantly for our analysis, it has been explicitly shown in [18, 19]

that the generalized second law of thermodynamics [6] yields a fundamental lower bound on the

characteristic relaxation time τ of perturbed physical systems. In particular, for a thermodynamic

system of temperature T , the universal relaxation bound can be expressed by the compact time-

times-temperature (TTT) relation [18, 19]

τ × T ≥ 1/π . (2)

In the context of a self-consistent quantum theory of gravity, the universal relaxation bound

(2) asserts that black holes, which are known to be characterized by a well defined Bekenstein-

Hawking temperature TBH [6], must have (at least) one exponentially decaying perturbation mode

Ψ(r, t) = ψ(r)e−iωt whose fundamental resonant frequency ω0 is characterized by the relation

[20, 21]

=ω0 ≤ πTBH . (3)

Interestingly, it has been proved [18, 19] that astrophysically realistic (spinning) Kerr black holes

conform to the universal relaxation bound (2). In particular, the fundamental inequality (3) is

saturated in the near-extremal TBH → 0 limit of rapidly-rotating Kerr black holes [18, 19].

We shall now show explicitly that the universal relaxation bound (2), when applied to the

characteristic resonant relaxation spectrum of near-extremal charged Reissner-Nordström black

holes, yields in a remarkably simple way the fundamental weak gravity (mass-charge) relation (1).

The universal relaxation bound and the weak gravity conjecture.— The late-time relaxation

dynamics of charged massive scalar fields in the charged Reissner-Nordström black-hole spacetime

is known to be characterized by exponentially damped oscillations [22–26]. In particular, the

characteristic relaxation timescale τrelax of the perturbed black-hole spacetime is determined by

the imaginary part of the fundamental (least damped) resonant mode of the composed black-hole-

field system:

τrelax ≡ 1/=ω0 . (4)

As we shall now prove, the intriguing mass-charge (weak gravity) inequality (1) can be deduced

directly from the universal relaxation bound (3) as applied to the characteristic complex relaxation

spectrum of near-extremal charged Reissner-Nordström black-hole spacetimes.
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The physical properties of a linearized perturbation mode [27, 28]

Ψ(t, r, θ, φ) = r−1eimφSlm(θ)ψlm(r;ω)e−iωt (5)

describing the dynamics of a scalar field Ψ of proper mass µ and charge coupling constant q in a

Reissner-Nordström black-hole spacetime of mass M and electric charge Q are determined by the

Schrödinger-like ordinary differential equation [22–26, 29]

d2ψ

dr∗2
+ V ψ = 0 , (6)

where the effective radial potential which characterizes the interaction of the charged massive field

with the curved black-hole spacetime is given by [22–26]

V = V (r;M,Q,ω, q, µ, l) =
(
ω − qQ

r

)2
−

(
1− 2M

r
+
Q2

r2

)[
µ2 +

l(l + 1)
r2

+
2M
r3

− 2Q2

r4

]
. (7)

We are interested in resonant perturbation modes of the composed black-hole-field system which are

characterized by the physically motivated boundary condition ψ(r → r+) ∼ e−i(ω−qQ/r+)r∗ of purely

ingoing waves at the horizon r+ = M+(M2−Q2)1/2 of the black hole. In addition, the black-hole-

field perturbation modes are characterized by the boundary condition ψ(r → ∞) ∼ ei
√

ω2−µ2r at

spatial infinity [30]. The Schrödinger-like differential equation (6) with the effective radial potential

(7) and the above stated physically motivated boundary conditions determine the complex resonant

spectrum {ωn(M,Q, µ, q, l)}n=∞
n=0 which characterizes the relaxation dynamics of the composed

Reissner-Nordström-black-hole-charged-massive-scalar-field system.

Interestingly, as explicitly shown in [22], the fundamental (least damped) resonances of this

composed black-hole-field system can be determined analytically in the regime [31]

TBH =
~(r+ − r−)

4πr2+
→ 0 (8)

of near-extremal black holes. In particular, from equations (6)-(7) one finds the remarkably compact

expression [22]

=ωn = 2πTBH(n+ 1/2 + =δ) ; n = 0, 1, 2, ... (9)

for the imaginary parts of the composed black-hole-field resonances in the near-extremal regime

(8), where the dimensionless field parameter δ is given by [22]

δ ≡
√
M2(q2 − µ2)− (l + 1/2)2 . (10)
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The mandatory existence of a charged particle which respects the dimensionless weak gravity

relation

q

µ
> 1 (11)

in the coupled Einstein-Maxwell theory can now be inferred by substituting n = 0 in the resonant

relaxation spectrum (9) and requiring that =ω0 ≤ πTBH [see (3)] for this fundamental black-hole

resonance [32]. We have therefore proved the previously conjectured mass-charge bound (1).

Summary.— The conjectured weak gravity relation µ/q < 1 [1] in theories describing a U(1)

gauge field coupled consistently to gravity has been the focus of intense research during the last

decade (see [8–14] and references therein). However, despite the flurry of activity in this field, the

origin of this highly interesting mass-charge relation has remained somewhat mysterious. In this

Letter we have explicitly shown that the generalized second law of thermodynamics [6], a physical

law which is widely believed to reflect a fundamental aspect of a self-consistent quantum theory

of gravity, may shed much light on the origins of this highly intriguing bound [33]. In particular,

it has been explicitly proved that the dimensionless mass-charge upper bound µ/q < 1 can be

deduced directly from the self-consistent interplay between quantum theory, thermodynamics, and

gravity.
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