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~ Abstract

The magnitude and sign of the coﬁstant of gravity in the general
theory of relativity are usually considered to be undetermined by the theory
and are chosen so that in the weak field limit the theory reduces to
Newtonian theory and is therefore in agreement with empirical results
about the world. It is here emphasised that the weak field limit is
really the Universe plus a localised source, and an analysis of this
problem demonstrates that in general relativity the constant of gravity
is necessarily positive and is determined by the large scale distribution
of matter in motion. The significance of this result is highlighted by
comparison with a scalar theory whare gravity is shown to be necessarily
repulsive. The relationship between these results and the usual inter-
pretation of general relativity is discussed and the differences are
resolved by an analysis of the interpretation of the equations governing

possible cosmological models.
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Abstract

The magnitude and sign of the constant of gravity in the general
theory of relativity are usually considered to be undetermined by the theory
and are chosen so that in the weak field limit the theory reduces tod
Newtonian theory and is therefore in agreement with empirical results
about the world. It is here emphasised that the weak field limit is
réally the Universe plus a localised source, and an analysis of this
problem démonstrates that in general relativity the constant of gravity
is necessarily positive and is determined by the large scale distribution
of matter in motion. The significance of this result is highlighted by
comparison with a scalar theorv where grevity is shown to be necessarily
repulsive. The relationship Between these results and the usual inter-
pretation of general relativity is discussed and the differences are
resolved by an analysis of the interpretation of the equations governing

possible cosmological models.




1. Introduction

The constant of gravity is usually considered to be an arbitrary
constant of nature whose magnitude and sign is to be determined by

experimant and observation. Thuz in gensral relativity with field equations
1 2 i, 3
R,. -5 g:R = kT, ds° = g..dx"dx?, & |ds = 0 (1)

it is customary to derive the 'weak field' limit

ds® = (1 - 26)dt? - (1 + 2¢)(dx° + dy? + dz?) (2)
2. _  xp %t v .
Ve = -9 2 i
dt 9x
and by comparing this with Newtonian theory to deduce that x = - 8mG.

The sign of k is chosen to make gravity an attractive force, the magnitude
(in terms of say atomic units) is chosen to give quantitative agreement

between theory and observation.

If a peverse theorist wished to choose « of opposite sign and of
a different magnitude the criticisms levelled against him would be that
his theory did not agree with our empirical knowledge of the world, but

there would be no logical inconsistency in such a choice.

In the above standard derivation of the magnitude and sign of the
gravitational constant, no accoﬁnt is taken of the rest of the matter
in the Universe. This is sometimes considered a weakness of general
relativity since it appears that the theory does not iﬁcorporate the
philosophical principles of Leibniz and Mach that local physics is determined
by the large scale distribution of matter in motion. In particular, if
the kinematics of the rest of the Universe were unchanged but the mean
density was different, the magnitude and sign of the constant of gravity
would be unchanged, local physics is therefore independent of the large

scale distribution of matter in motion.



The standard derivation can be criticised on several grounds. The

world of our experience is not of a local source in an otherwise empty
Universe, on the contrary it is of the effect of local sources embedded
in a cosmological distribution of matter, and it is this problem that
should be compared with our empirical knowledge of the world. Moreover
The standard wesak field anzlysis neesds the boundary conditions gij > nij’
the Minkowski metric at large distances from the source. What justification
is there for imposing this boundary condition? The answer must be that
the cosmological metric is approximately Minkowskian if we consider times
and distances that are small compared to typical cosmological values,soc even
in the standard treatment the large scale properties of the Universe |
enter implicitly through the imposition of boundary conditions. This
suggests that we should analyse the Universe plus a local source and then
compare this to the world of our experience, when this is done it emerges
that gravity is necessarily attractive and the magnitude of the constant
of gravity is determined by the large scale distribution of matter in
motion in accord with the philosophical principles of Leibniz and Mach.
It should be emphasised that this is a consequence of General Relativity
in its standard form, what is at issue is the question of interpretation
of results of the theory. The coupling constant « 1in equations (1) is
shown to cancel out of the results, its place is taken by cosmologicél

factors.

2. A simple model

Before considering the problem in General Relativity it is worth

looking at a very simple theory where

2

ds® = ¢(dt2 - ax?

- dy2 - sz), d(x) = 2 K J mG(x, y)dsy, d'f ds = 0
(2.1)

This is essentially the Einstein-Nordstrgm theory where



ct = 0, R = T, 5fds = 0 (2.2)

with C;kl the Weyl tensor and R and curvature scalar, except that
the second of equations (2.1} is Ip irntegral form with 06(x, y) the

If we solve this theory for a cosmological distribution plus a local

source of mass M, the solution is of the form

=
=

o = Lo- = kgt (2.3)

c
'ilﬂ

where KMu/Ru is the sum over the cosmological distribution and is the
'potential' of the Universe, that is the sum over the back light cone of
individual «m/r.

The geodesic equation for the motion of a test particle in the weak

field 1limit is then

a’x* -_1123¢ }_Ru M xi (2.14)
——-——‘———.""2——— .
dt 2¢ x> Mu r3 '

The coupling constant k does not enter the equation -for a geodesic since
it cancels from top and bottom of equation (2.4). In the geodesic equation
the 'constant of gravity' is %Ru/Mu, i.e. the sum over the cosmological
distribution. Moreover the resulting weak field equation of motion gives

a repulsive force, bound orbits are therefore not possible in this theory.

This result should be contrasted with the result obtained by following
the normal weak field analysis for a localised source in an otherwise empty

universe. Following this procedure we would arrive at the result

2 1 .
1
6 = 1+;—M, d;‘ =-2-;<3%x1 (2.5)
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and by choosing k = -2G we would obtain agreement with Newtonian
theory, in particular we could make gravity an attractive force. Clearly

the normal procedure is incorrect.

3. The Universe plus one body problem in general relativity

For simplicity I shall confine my attenticn to homogeneous isotropic
y

cosmological models, the metric can then be expressed in the form'

_ax® 4 dy® + dz’
(1 + kr2/R2)2

2

ds? = (1) [dr? ] (3.1)

where k = 0, +1, -1, and R is an arbitrary constant. In these -
coordinates the fundamental particles of the substratum are at rest

(r = constant), and 1t is measured by the round trip travel time of a
light signal between these particles. The usual Robertson-Walker metric

1s derived from this by the transformation
t = J c(t)dr, R(t) = C(1) - (3.2)

The number density of particles ng is a constant in these coordinates and

the field equations of general relativity give the one condition

gf_+ yke _ KMol | KPg (3.3)
C R2 - 3 -3 :

where Po = DM and m is the mass of the particles. This equation

is readily solved to yield

TL. Tnfeid and A. Schild, Physical Review, Vol.68, p.250, 1945,
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R?sin%(t/R) k = 41 (3.4)

We notice that C{(t) is proportional to k and is always positive.

We now consider the effect of adding a local source density Py = mym_,

at r = 0. If we use the weak field approximation we expand the metric

gij = Cij + hij where Cij is the cosmological metric given by equations
(3.1) and (3.4), and impose the boundary condition gij > Cij as r > =,
After a little manipulation we find that o0 is given by the equation
_ 1 . .
Roo = K(Too 3 gooT) which is
. . i3
. . bg g n-g .g .
1] _ 00~00 00,1700,7] 1
ngo T goo,ij g * g 2 K(po * pl)
00 00

(3.5)

where Cij = C2(T)nij. In the weak field slow motion approximation this

gives

2
Kp . 2 2 2
2 _ o 2 _ 3M 2 3M C(dx"+dy“+dz”)
ds” = (12 ) () 11 Trpoc('r)r)dT 1+ ﬂpoc(r)r (l+kr2/R2)2 ]
(3.6)

where M = J pldV is the mass of the local source.

While this weak field analysis is adequate for our .purposes it is
possible to produce an exact solution by embedding a local source in a
spherical hole in the cosmological model as was first done by Einstein

and Strauss.+ The analysis is somewhat tedious and lengthy and will be

TA. Einstein and E.G. Strauss, Review of Modern Physics, Vol.l7, p.120, 19445.
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published elsewhere, but in the weak field slow motion approximation we

again obtain the result given in equation (3.6).

The result (3.6) demonstrates that the metric scales with KQ,
and that the conefficient of drz iz of the form (1 - %?. This should
De nontrasted with the wvesult of Ths scalar theory whare we wbiained
(1 + %J. This change of sign is produced by the non linearity of equation
(3.5), and it is this sign change that makes gravity attractive in general

relativity but repulsive in the scalar theory.

4. Equation of motion in the weak field limit

The equation of motion of a test particle is given by the geodesics

of the metric (3.6), in the weak field limit this gives .
d , dxi - 3Mxi
I ety ) = - 3 | (1)
QHQOP

The effect of the mass M 1is to produce an attractive force. In fact
a test particle will spiral inwards, this is easily seen by transforming

to a time scale .0. -such that do = dr/c(1), equation (4.1) is then

_ C(T)3MX1
dr2 21rpor3

which for a circular orbit has r « 1/c(t). In the ' time scale the
Universe is at rest and an orbit spirals inwards; as Eddington pointed
out long ago this is equivalent to saying that the orbit is stationary

and the Universe expanding.

‘We have now reached our principal goal, equation (4.1) demonstrates

that in the weak field limit of general relativity gravity is an attractive




force, and that the 'constant of gravity' is given by Po and e(T),
that is by the cosmological distribution of matter; the coupling constant

k does not appear in the final result.

5. Relation to the usual procedure

The time scale T that has been used is one in which the cosmological
substratum is at rest, it is related to the cosmological time of the

Robertson-Walker form of the metric through the transformation

c(t)dr = Adt, R(t) = c(t)/A (5.1)

~

where A 1is an arbitrary constant. If we now scale all lengths and times

by c¢(o), so that c(t)r = AL, the orbit equation becomes

a%t amet oMet 3
- T T3 % "TTa3 o © % o (5.2)
dt 2ﬂApoZ 2 o
and the cosmological metric becomes
Kp 2 2 2 2
ds? = A2(-2) a2 - R(y) {&X * dy” + dz) (5.3)

12 (1 + kr2/R2)2

In these Robertson-Walker coordinates the effect of a local source is
attractive and the 'constant of gravity' is a constant given by the scaling

factor A and the mean density of the Universe P, as measured in T units.

The density 04 is constant on the <t scale, in the t scale the

density is therefore



3
) A b P

p(t) = =
3 (1) R3(¢)

o}

If we now differentiate the field equation (3.3) we obtain

3 .. . )
5 2
(£) = - ﬁ_JZ(S_.— Sy - L ffg.l.gig (5.5)
e - 2 3 TR 2 R 2 :
c c dt

Equations (5.4) and (5.5) are recognisable as the field equations of
With 1T and t

general relativity in Robertson-Walker coordinates.

both positive, A is positive and equation (5.5) requires R/R to be
Turning now to equation (5.1) for the

negative as p(t) is positive.
value of the constant of gravity we find

| ) . .
- SqH” - R - R
G = Gy @ F 2 H = 3 (5.6)

which is again recognisable as a standard result of general relativity

in Robertson-Walker coordinates.

In the usual procedure the first of equations (5.6) is interpreted

as imposing constraints on the kinematics of the Universe given the value

Our analysis demonstrates that this equation should be interpreted
It should be noted that equation

of G.
as determining G given the kinematics.
(5.5) which is just one of the standard Robertson-Walker results requires

G as given by equation (5.6) to be positive. The theory would be
inconsistent if G were negative.
Equation (5.6) also demonstrates that general relativity satisfies

the Leibniz-Mach principle; if the kinematics is unchanged, but the average
density is changed, then G 1is changed. Similarly changing the kinematics

but keeping the matter density unchanged also changes the value of G.

We conclude that an analysis of the Universe plus a local source in

general relativity shows that gravity is necessarily attractive and that

the 'constant of gravity' is determined by the large scale distribution of

matter in motion.




