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Abstract

We show that when the gravitational field is treated quantum-mechanically, it induces fluctu-

ations – noise – in the lengths of the arms of gravitational wave detectors. The characteristics

of the noise depend on the quantum state of the gravitational field, and can be calculated

exactly in several interesting cases. For coherent states the noise is very small, but it can be

greatly enhanced in thermal and (especially) squeezed states. Detection of this fundamental

noise would constitute direct evidence for the quantization of gravity and the existence of

gravitons.
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While there is much we don’t know about the complete theory of quantum gravity, we

do know that perturbation theory, when applied to Einstein gravity, contains a massless

helicity-two particle: the graviton. Conversely, consistency in the quantum mechanics of a

massless helicity-two particle leads one to Einstein gravity, as Feynman famously showed [1].

However, experimental support for the existence of gravitons remains weak. Clearly, it would

be very desirable to identify empirical phenomena that could be attributed convincingly to

the quantization of the gravitational field or, in other words, to the existence of gravitons.

With this in mind, we have calculated the behavior of gravitational wave detectors [2, 3],

in response to quantized states of the gravitational field [4, 5]. The quantum nature of the

gravitational field manifests itself as a characteristic state-dependent noise. For coherent

states the noise is tiny, as anticipated by Dyson [6], but in other kinds of states it can be

significantly larger, and potentially detectable.

We model the detector as two free-falling masses whose geodesic separation is being

monitored. According to the geodesic deviation equation, the separation of the masses is

sensitive to the Riemann tensor induced by gauge-invariant perturbations of the metric,

including by incident gravitational waves. Let the geodesic separation be ξ. Then

ξ̈ =
1

2
ḧξ , (1)

where h is the metric perturbation, or strain. This familiar equation, known mathematically

as a Hill equation, gives the tidal acceleration of ξ in the presence of a gravitational wave.

By solving Einstein’s equations with different sources, one obtains signal templates for the

strain h, which in turn feed the celebrated stretching and squeezing of ξ, the length of the

detector arm.

The question we would like to ask now is: how does this equation change when the

gravitational field is quantized? Or, in other words, what is the equation of motion for the

geodesic separation if the spacetime metric is actually a quantum field?

To answer this, we go back to basics. The action for our gravity+detector system is the

Einstein-Hilbert action coupled to two free-falling masses, M0 and m0, with worldlines Xµ(t)

and Y µ(t):

S =
1

16πG

∫
d4x
√
−gR−M0

∫
dt
»
−Ẋ2 −m0

∫
dt
»
−Ẏ 2 . (2)

If the two masses are close enough, the metric can be regarded as nearly flat: gµν = ηµν+hµν .

We now expand the action to leading order and make some judicious gauge choices. We also

decompose the perturbation, h(t, ~x), into Fourier modes with amplitude q(t) and frequency

ω. Focusing for now on a single mode (and with some additional simplifying assumptions,

1



such as restricting to one polarization), the action reduces further to

Sω =

∫
dt

Å
1

2
m(q̇2 − ω2q2) +

1

2
m0ξ̇

2 − gq̇ξ̇ξ
ã
. (3)

This is the action for a gravitational field mode of energy ~ω, with amplitude proportional

to q, interacting with a free-falling mass m0 whose geodesic separation (“arm length”) from

a heavier mass is given by ξ. The unphysical mass m, introduced for dimensional reasons,

will play no role, and the coupling constant g is proportional to m0, in accordance with the

equivalence principle. The action describes a simple harmonic oscillator coupled to a free

particle via a cubic derivative interaction. It is ready for quantization.

Before plunging in, let us anticipate our strategy. We have a harmonic oscillator (the

gravitational field mode) in some initial state, |ψω〉. The mode can have a final state |f〉,
which, after interaction with the detector, will generically be different from its initial state

because the detector masses will typically both absorb and emit gravitons (through sponta-

neous as well as stimulated emission). However, we are not interested in the final state of the

mode; indeed, the only quantity we can directly measure is the arm length ξ itself. That is,

we would like to integrate out the graviton mode as well as sum over its final states. Thus,

the most general thing we can calculate is the transition probability for ξ to go from state

|φA〉 to state |φB〉 with an interaction that takes place between t = 0 and t = T :

Pψω (φA → φB) =
∑
|f〉

|〈f, φB |Û(T, 0)|ψω, φA〉|2 . (4)

Here |ψω〉 is a given initial state of the graviton mode, Û is the unitary time-evolution

operator associated with the Hamiltonian obtained from (3), and our notation for tensor

product states of the joint Hilbert space is |a, b〉 ≡ |a〉 ⊗ |b〉.
The evaluation of this transition probability is a calculation in ordinary quantum me-

chanics. Due to the relatively simple form of the Lagrangian, (3), which is quadratic in q, it

can be evaluated exactly [5], without recourse to perturbation theory, in either the canonical

or path-integral approach. The calculation is not entirely straightforward, however, because

there are several subtleties along the way, in particular the derivative coupling and the finite-

time interaction. When the dust settles, we obtain

Pψω
(φA → φB) ∼

∫
DξDξ′e

i
~

∫ T

0
dt 1

2m0(ξ̇2−ξ̇
′2)
Fψω

[ξ, ξ′] . (5)

This is a double path integral because it describes a probability, rather than an amplitude.

In the exponent is the free action of the particle. The gravitational field mode has been
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integrated out and the entirety of its effect on the arm length is encapsulated in Fψω
[ξ, ξ′],

known as the Feynman-Vernon influence functional [7]. The aptly named influence functional

captures the effect, or influence, of one quantum system on another. In our context, the

influence functional tells us about the effect of the quantized gravitational field mode on the

physics of the detector arm length. We can derive a compact analytic expression for Fψω
[ξ, ξ′]

in general and, crucially, we are able to evaluate it explicitly for several interesting classes of

states [5].

Now we can tackle the general problem of a continuum of modes – a quantum field – in-

teracting with the detector. The quantum state of the gravitational field |Ψ〉 can be written

as a tensor product of the Hilbert states of the individual graviton modes: |Ψ〉 =
⊗

~k |ψω(~k)〉.
Since the action for the field involves a sum over modes, the field-theoretic influence func-

tional becomes a product of the quantum-mechanical mode influence functionals. For several

important classes of states (the vacuum, coherent states, thermal states, squeezed states), we

are able to evaluate the full influence functional. This typically contains a term of the form

FΨ[ξ, ξ′] ∼ e
1

2~2

∫
AΨ(X−X′)2

(6)

where X,X ′ are some known functions of ξ, ξ′.

Next comes an ingenious trick. Following Feynman and Vernon, we can express the

influence function in a remarkably suggestive form. We insert the identity

e
1

2~2

∫
AΨ(X−X′)2

∼
∫
DNΨe

− 1
2

∫
A−1

Ψ
N2

Ψ+ i
~

∫
NΨ(X−X′)

(7)

into our transition probability and (disregarding some technicalities [5] for brevity) find

roughly that

PΨ(φA → φB) ∼
∫
DNΨe

− 1
2

∫
A−1

Ψ
N2

Ψ

∣∣∣∣∫ Dξe i
~

∫ T

0
dt( 1

2m0ξ̇
2+ 1

4m0(ḧ+N̈Ψ)ξ2)
∣∣∣∣2 . (8)

This expression tells us something remarkable. It says that the detector arm length is subject

to an additional fluctuation. This extra function NΨ(t) can be viewed as Gaussian noise. The

statistical properties of the noise stem from aspects of AΨ, its auto-correlation function. Thus

we see that the upshot of integrating out a quantum field is to couple the remaining degree

of freedom, ξ, to stochastic noise [8, 9]. It is the noise produced by the quantization of the

gravitational field.

Finally, we can derive an effective, quantum-corrected equation of motion for the arm
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length ξ by taking a saddle point of the ξ path integral. The result, when done carefully, is

ξ̈ =
1

2

Å
ḧ+ N̈Ψ −

m0G

c5
d5

dt5
ξ2

ã
ξ . (9)

This striking equation is the quantum generalization of (1). It is essentially the geodesic de-

viation equation in the presence of a quantized gravitational field. Within the parentheses are

three terms that source the tidal acceleration ξ̈. The first term is the classical gravitational

perturbation, already encountered in (1). The last term is a gravitational radiation reaction

term, the counterpart of the three-derivative Abraham-Lorentz acceleration in electromag-

netism. The pathologies that ensue when radiation reaction equations are taken literally have

been the subject of much confusion, and it has long been anticipated that quantum effects

will somehow remedy the situation. Here we see that such equations arise as approximations

to path integrals that are free of pathologies.

Most interestingly, (9) contains a state-dependent quantum noise, NΨ(t), as a source.

The presence of this term means that this is now a stochastic differential equation. That is

intuitively appealing: it conforms to the expectation that a quantum field will induce random

fluctuations in any classical degree of freedom it interacts with. This randomness has the

effect of altering the dynamics of the classical degree of freedom so that it is necessarily

described by a stochastic – rather than a deterministic – equation of motion.

The properties of the noise – its amplitude, power spectrum, etc – are calculable and

depend on the state. We find that for the vacuum state or a coherent state, the fluctuations

in the arm length are extremely small and almost certainly undetectable, as foreseen by

Dyson. But for thermal states – such as from cosmology or evaporating black holes – the

noise is significantly enhanced. Most favorably, if the gravitational field is in a squeezed state,

as predicted by some inflationary models [10, 11], the fluctuations in the arm length can be

enhanced by an exponential of the squeezing parameter, and are potentially detectable.

The study of noise has played an important role in several major developments in physics.

It has supplied early evidence for the existence of molecules (through Brownian motion), and

for the existence of fractionally charged quasiparticles (through shot noise). It is possible,

likewise, that the existence of gravitons will first be revealed through noise.
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