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Abstract

At mesoscopic scales close to, but somewhat larger than, Planck length one

could describe quantum spacetime and matter in terms of a quantum-corrected

geometry. The key feature of such a description is the introduction of a zero-point-

length into the spacetime. When we proceed from quantum geometry to quantum

matter, the zero-point-length will introduce corrections in the propagator of matter

field in a specific manner. On the other hand, one cannot ignore the self gravity

of matter fields at the mesoscopic scales and this will also modify the form of the

propagator. Consistency demands that, these two modifications coming from two

different directions, are the same. I show that this non-trivial demand is actually

satisfied. Surprisingly, the principle of equivalence, operating at Planck scales,

ensures this consistency in a subtle manner.

The mesoscopic regime of the spacetime interpolates between the microscopic regime,
very close to Planck scale (which requires a full quantum gravitational description) and
macroscopic regime, far away from the Planck scale (at which one can use the formalism
of quantum field theory in fixed curved spacetime). This regime is close, but not too
close, to the Planck scale so that we can still introduce some kind of effective geometric
description incorporating dominant quantum gravity effects.

There are two distinct features which come into play in the mesoscopic regime, as
we approach the Planck scale. The first, which is well-recognized, is the fact that
spacetime close to Planck scales needs to be described very differently from spacetime
at macroscopic scales. Much of the work in the area of quantum gravity, indeed, has
something to say about this issue. The second feature — which has not been equally
emphasized — concerns the matter sector: How do you describe matter — say, an
electron — close to Planck scales? This question is non-trivial because no field — even
classically — is ever free. All fields possess energy which curves the spacetime in which
it is propagating. It is easy to see that this nonlinearity through self-gravity cannot be
ignored in the mesoscopic regime as we approach Planck scales.
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These two features are also conceptually distinct. The first feature is related to how
the (effective) quantum geometry affects the matter while the second feature is related to
how matter at Planck scales modifies the geometry. Nevertheless, consistency demands
that we should arrive at the fundamentally same description from either direction. I will
show that this is indeed what happens; both features lead us to an effective quantum
(corrected) geometry which exhibits a zero-point-length in the spacetime. Surprisingly,
the principle of equivalence plays an interesting and subtle role in this description.

Consider a scalar field of mass m which is propagating in a space(time) with metric
gik and is treated within the context of quantum field theory in curved spacetime. I
want to work with a descriptor of the dynamics of this field which is robust enough to
survive (and be useful) at mesoscopic scales. The propagator for the field is a good choice
for such a description. All the physics of the scalar field is contained in the standard
Feynman propagator Gstd(x1, x2), or equivalently in G ≡ mGstd which will turn out
to be simpler to handle algebraically. There are three equivalent ways of defining this
propagator without using the notion of a local quantum field operator. The first definition
of the (Euclidean) propagator1 is:

Gstd(x1, x2;m) ≡ mGstd(x1, x2;m
2) =

∫ ∞

0

m ds e−m2sKstd(x1, x2; s) (1)

whereKstd is the standard, zero-mass, Schwinger (heat) kernel given byKstd(x1, x2; s) ≡
〈x1|es�g |x2〉. Here �g is the Laplacian in the background space(time). The heat kernel
is a purely geometric object, entirely determined by the background geometry; all the
information about the scalar field is contained in the single parameter m. The second
definition of the propagator is based on the path integral sum:

Gstd(x1, x2;m) =
∑

paths σ

exp−mσ(x1, x2) (2)

where σ(x1, x2) is the length of the path connecting the two events x1, x2 and the sum
is over all paths connecting these two events. This path integral can be defined in the
lattice and computed — with suitable measure — in the limit of zero lattice spacing
[1, 2]. The third definition is a variant of this, obtained by converting the path integral
to an ordinary integral. To do this, I will introduce a Dirac delta function into the path
integral sum in Eq. (2) and use the fact that both ℓ and σ are positive definite, to obtain:

Gstd(x1, x2;m) =

∫ ∞

0

dℓ e−mℓ
∑

paths σ

δD (ℓ− σ(x2, x1)) ≡
∫ ∞

0

dℓ e−mℓN(ℓ;x2, x1) (3)

where we have defined the function N(ℓ;x2, x1) to be:

N(ℓ;x2, x1) ≡
∑

paths σ

δD (σ(x2, x1)− ℓ) (4)

1I will work in a Euclidean space(time) for mathematical convenience and will assume that the
results in spacetime arise through analytic continuation. This is not essential and one could have done
everything in the Lorentzian spacetime itself; it just makes life easier.
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The last equality in Eq. (3) describes the path integral as an ordinary integral with
a measure N(ℓ) which — according to Eq. (4) — can be thought of as counting the
effective number of paths2 of length ℓ connecting the two events x1 and x2. Most of
the time I will just write N(ℓ) without displaying the dependence on the spacetime
coordinates for notational simplicity.

Before proceeding further, let me illustrate the form of N(ℓ) in the case of flat
space. Expressing both Gstd(p,m) = m(p2+m2)−1 and N(p, ℓ) in momentum space, we
immediately see that:

Gstd(p
2,m) = mGstd(p

2,m2) =
m

m2 + p2
=

∫ ∞

0

dℓ e−mℓ cos pℓ (5)

showing that N(p, ℓ) in momentum space is given by the simple expression N(p, ℓ) =
cos(pℓ).

This description in terms of a propagator, defined by any of these three approaches,
is totally adequate to handle the matter field, when it is propagating in a given curved
spacetime. None of these definitions use the formalism of a local field theory and its
canonical quantisation, notions which may not survive close to Planck scales; therefore
the propagator provides a robust construct which we can rely on at mesoscopic scales.

In particular, we can ask: What happens to the propagator when we approach the
Planck scales? Obviously, the classical geometrical description needs to be modified
close to Planck scales in a manner which is at present unknown. It is, however, possible
to capture the most important effects of quantum gravity by introducing a zero-point-
length to the spacetime [3]. This is based on the idea that the dominant effect of
quantum gravity at mesoscopic scales can be captured by assuming3 that the geodesic
distance σ2(x1, x2) has to be replaced by σ2(x1, x2) → σ2(x1, x2) + L2 where L2 is of
the order of Planck area L2

P ≡ (G~/c3).
It is easy to see how the introduction of zero-point-length into the geometry modifies

the propagator in Eq. (3). The existence of the zero-point-length requires us to change
every path length ℓ to (ℓ2+L2)1/2. Therefore the quantum corrected propagator will be
given by the last integral in Eq. (3) with this replacement. This leads to the expression
for the propagator in an (effective) quantum geometry:

GQG(x1, x2;m) =

∫ ∞

0

dℓ N(ℓ;x1, x2) exp
(

−m
√

ℓ2 + L2

)

(6)

The modification ℓ → (ℓ2+L2)1/2 ensures that all path lengths are bounded from below
by the zero-point-length.

We know that the original path integral in Eq. (3) had an equivalent description in
terms of the heat kernel through Eq. (1). How does the modification in Eq. (6) translate
to the relation between the heat kernel and the propagator? With some elementary
algebra, involving Laplace transforms [5], one can show that Eq. (1) is now modified to:

GQG(x1, x2;m) =

∫ ∞

0

m ds e−m2s−L2/4sKstd(x1, x2; s) (7)

2Of course, the actual number of paths, of a given length connecting any two events, is either zero or
infinity. But N(ℓ), defined as the inverse Laplace transform of G (see Eq. (3)), will be a finite quantity.

3Such an idea has been introduced and explored extensively in the past literature [3, 4] and hence I
will pause to describe it here; I will just accept it as a working hypothesis and proceed further.
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Recall that the leading order behaviour of the heat kernel is Kstd ∼ exp[−σ2(x1, x2)/4s]
where σ2 is the geodesic distance between the two events; so the modification in Eq. (7)
amounts to the replacement σ2 → σ2 + L2 to the leading order. That makes perfect
sense.

Again, let me illustrate both Eq. (6) and Eq. (7) — which are valid in arbitrary
curved spacetime — in the context of the flat spacetime. Working in the momentum
space and using the result N(p, ℓ) = cos pl from Eq. (6), we get:

GQG(p
2) =

∫ ∞

0

dℓ e−m
√
L2+ℓ2 cos(pℓ) =

mL
√

p2 +m2
K1[L

√

p2 +m2] (8)

Similarly, using the expression for momentum space, zero-mass, kernel in flat space,
Kstd(s; p) = exp(−sp2) in Eq. (7) we get:

GQG(p
2) =

∫ ∞

0

ds m exp

[

−s(p2 +m2)− L2

4s

]

=
mL

√

p2 +m2
K1[L

√

p2 +m2] (9)

which is identical to Eq. (8).
I will now approach the same issue from a different direction. The path integral in

Eq. (2) tells us that the amplitude is exponentially suppressed for paths longer than the
Compton wavelength λc ≡ ~/mc. This is because the action for a relativistic particle
of mass m gives the factor exp(−A/~) with A/~ = −mcσ/~ = −σ/λc where σ is the
length of the path and λc = ~/mc is the Compton wavelength of the particle. When the
self-gravity of the matter field is introduced into the picture, another length scale — viz.
the gravitational Schwarzschild radius λg ≡ Gm/c2 — enters the fray. The self-gravity
of a particle of mass m will strongly curve the spacetime at length scales comparable
to λg. As I said before, at these length scales, we can no longer think of a ‘free field’
even in flat spacetime. In fact, it makes absolutely no sense to sum over paths with
σ . λg in the path integral. Just as paths with σ & λc are suppressed exponentially
by the factor exp[−(σ/λc)], we should suppress exponentially4 the paths with σ . λg

by another factor exp[−(λg/σ)]. Therefore, a natural and minimal modification of the
path integral sum in Eq. (2), which incorporates the self gravity of a particle of mass m,
will lead to the propagator:

G(x1, x2) ≡
∑

paths σ

exp

[

− σ

λc

]

exp

[

−λ

σ

]

=
∑

paths σ

exp

[

−m

(

σ +
L2

σ

)]

(10)

where L = O(1)LP . So we have now arrived at another definition for the propagator
which incorporates the Planck scale effects. This modification, given by Eq. (10) has
a beautiful symmetry: The amplitude is invariant under the duality transformation
σ → L2/σ; we will say more about it in the sequel.

Starting from the modifications of the quantum geometry and approaching the mat-
ter sector we argued that the propagator has to be modified into the form in Eq. (6)
or, equivalently, to Eq. (7). On the other hand, starting from matter sector and incor-
porating the self gravity of a particle of mass m into the path integral propagator, we

4Why this factor should also be exponential, rather than of some other functional form, will become
clear soon.

4



have arrived at the modification of the propagator in Eq. (10). Consistency demands
that these two propagators should be identical.

Remarkably enough, they are! One can indeed give meaning to the path integral sum
in Eq. (10) by defining it on a lattice and then taking the limit of zero lattice spacing.
Such an exercise (see Ref. [1]) shows that the path integral sum in Eq. (10) does lead
precisely to the result in Eq. (7).

This result is non-trivial and could not have been “guessed”. The result also depends
on the principle of equivalence in a subtle and interesting way. To see this, note that
the Compton wavelength λc = ~/(mic) is defined in terms of the inertial mass of the
particle. The part of the path integral amplitude exp[−(σ/λc)] comes from combining
special relativity with quantum theory and does not depend on the existence of gravity.
On the other hand, the gravitational radius λg ≡ Gmg/c

2 is defined in terms of the
gravitational mass of the particle. These two factors are combined in the first equality
of Eq. (10). But they can be expressed as in the second equality of Eq. (10) only because
of the assumption mi = mg! If mi 6= mg then we will end up with the argument of the
exponential:

miσ

~c
+

Gmg

c2σ
=

1

λc

[

σ +

(

mg

mi

)

L2
P

σ

]

(11)

Clearly, one cannot provide a purely geometrical interpretation for such a factor in the
square bracket, occurring in a path integral. The addition of a universal zero-point-
length to the spacetime — which independent of any parameters of the matter sector
— will not be equivalent to the modification of the propagator due to its self-gravity if
mi 6= mg. Just as classical gravity admits a purely geometrical description only because
mi = mg, the quantum geometry allows a universal description in terms of zero-point-
length only because of mi = mg. We now have principle of equivalence operating at
Planck scales!

This result also tells us why the exponential form of the suppression exp[−(λg/σ)]
— rather than some other functional form — in Eq. (10), for path lengths smaller than
Schwarzschild radius, is uniquely selected. No other functional form will allows us to
separate out to a purely geometrical factor in the form f1(mi,mg)f2(σ) in the exponent.
As a bonus, when mi = mg, we are led to the factor [σ + (L2/σ)], which exhibits the
duality symmetry, σ → L2/σ. This is again a direct consequence of the principle of
equivalence.

There is an alternate way of relating the two directions of approach we have adopted
above. To do this, I begin by relating the two propagators GQG and Gstd. It is straight-
forward to show, again using some Laplace transform tricks, that [5]

GQG(x1, x2;m
2) = − ∂

∂m2

∫ ∞

m2

dm2
0 J0

[

L
√

m2
0 −m2

]

Gstd(x1, x2;m
2
0) (12)

This is equivalent to assuming that — close to Planck scales — there is an amplitude
〈m|m0〉 for a system with mass m0 to appear as a system with mass m. Such a feature
can arise due to quantum fluctuations in the length scales as follows. If we put m0 = λm
and write Gstd as a path integral sum, then Eq. (12) can be re-expressed in the form

GQG(x1, x2;m
2) =

∫ ∞

1

dλ A(m,λ)
∑

paths σ

e−mλσ (13)
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with

A(m,λ) = − λ(Lm)√
λ2 − 1

J1

[

mL
√

λ2 − 1
]

(14)

for λ > 1. (There is a Dirac delta function contribution at λ = 1 which I have not
displayed.) This suggests the following interpretation: The presence of a mass m in the
space(time) induces fluctuations in the lengths of the paths changing σ → λσ with an
amplitude A(m,λ). The correct propagator GQG(m) has to be obtained by integrating
over these fluctuations as well as the sum over paths.

These results tell us that as we approach Planck scales, fluctuations of quantum
geometry and quantum fluctuations of matter merge with each other and acquire a
unified description in terms of the zero-point-lengththanks to principle of equivalence.
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