Reducing Organic Waste and Improving Soil Systems with Biochar in Washington State
WA Biomass Inventory – 2013 update

<table>
<thead>
<tr>
<th>Sector</th>
<th>Mtbd/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Total</td>
<td>10.6</td>
</tr>
<tr>
<td>Field Residue</td>
<td>2.6</td>
</tr>
<tr>
<td>Animal Waste</td>
<td>0.8</td>
</tr>
<tr>
<td>Forestry</td>
<td>5.8</td>
</tr>
<tr>
<td>Food Packing</td>
<td>0.15</td>
</tr>
<tr>
<td>Food Processing</td>
<td>0.14</td>
</tr>
<tr>
<td>Animal Processing</td>
<td>0.05</td>
</tr>
<tr>
<td>Municipal</td>
<td>1.0</td>
</tr>
</tbody>
</table>

http://pacificbiomass.org
Biomass Methane Potential

Moody et al., 2011
Compost and Biosolids applications

12 sites monitored 2 to 18 years after application:

- Soil carbon and nitrogen remained above control soils
- Soil water holding capacity also above control soils

Brown et al., 2011

Mark Fuchs November 15, 2017
What is Biochar

Biochar is a fine-grained, highly porous material created by the thermo-chemical transformation of wood (& straw) biomass.

Biochar helps soils retain nutrients and water due to its large surface area. The greater the surface area the better the biochar.

Mark Fuchs November 15, 2017
Biochar is similar to activated carbon

Activated carbon properties

- High Surface area/gram
- High sorption capacity
- Can be designed for high cation and/or anion exchange
- High water holding capacity and increased aeration
Scanning Electron Micrograph: WSU

Douglas Fir Wood

Douglas Fir Bark

Hybrid Poplar wood

Suliman et al., 2016
Soil and added Biochar: Water Holding Capacity

Quincy Sand (QS)

- High water release
- Low soil water retention

Unoxidized biochar + QS

- Low water release
- High soil water retention

Oxidized biochar + QS

- Lower water release
- Higher soil water retention

Suliman et al., 2017
Biochar impact on Soils

- Significantly increase water holding capacity
- Improve fertilizer N use, & legume nodulation
- Biochar provides other macro/micro nutrients
- Biochar reduces N_2O off-gassing & increases CH_4 uptake in soils
 - GHG impact of N_2O & CH_4 - 296 and 23 times CO$_2$
How is biochar made?

Mark Fuchs November 15, 2017

 Courtesy Kelpie Wilson
 http://www.greenyourhead.com
World’s smallest biochar reactor

Mark Fuchs November 15, 2017
Biochar is made & used around the world

Mark Fuchs November 15, 2017
Ag Energy Solutions finds unexpected market for biochar

Waste-to-power byproduct becomes company’s focus

By Mike McLean
September 14th, 2017

• Numerous crops and other uses being evaluated
• Marijuana produces well with AgEnergy biochar
• Expect to be profitable next year
Biochar Solutions Inc. Chips to Biochar
2 Dry tph chips - > 2 CY/hr biochar + MMBtuh thermal

Mark Fuchs November 15, 2017
Organic matter in WA soils

SSURGO Weighted Average Organic Matter Content for the Upper 30 cm, Excluding Forest Organic Surface Litter

Legend
- OM 0-30 cm wt% avg.
 - < 1
 - > 1 - 2
 - > 2 - 3
 - > 3 - 4
 - > 4 - 5
 - > 5 - 6
 - > 6 - 7
 - > 7 - 8
 - > 8 - 9
 - > 9

Data Source: Soil Survey Geographic Database (SSURGO), 2013 (http://websoilsurvey.sc.egov.usda.gov)

Organic matter content is percent by weight in the los < 2 mm fraction. Blank areas indicate that SSURGO data is not available.

Mark Fuchs November 15, 2017
Palouse silt loam - near Pullman, WA

- Soil organic carbon 4% to 5% (topsoil)
- Depth interval 4” (10 centimeters)
Terra Preta Soil of the Amazon Basin

Left - an oxisol poor in nutrients.
- typical soil of the hot/humid tropics

Right - fertile terra preta soil
- transformed by human activity
- Very high in stable carbon

Depth interval - 10 cm

Glaser, et al., 2001
African Dark Earth Soils

Left – Typical African soil
• Hot/humid Liberia and Ghana.

Right - fertile African Dark Earth soil
• transformed by human activity
• Very high in stable carbon

Depth interval - 10 cm

Mark Fuchs November 15, 2017

Solomon et al., 2016
Terra Preta

8 g C/kg = 15 tons/ac-ft

oxisol – low black carbon

terra preta – high black carbon

from Glaser, et al., 2001

African Dark Earth

Solomon et al., 2016
Soils of the Illinois Plain

Drummer Silty Clay Loam
- State Soil of Illinois
- Depth interval – inches
- Deep, well mixed, extremely fertile organic rich soils

Illinois State Soil, NRCS - USDA

Mark Fuchs November 15, 2017
Four main strategies to reduce compost odor:

- Enhance emissions control infrastructure (more air quality control equipment),
- Biological optimization of compost piles (changes in windrow size, aeration, etc.),
- Add anaerobic pre-processing for the highly biodegradable wastes (high solids anaerobic digestion), and
- Amending compost materials with high-carbon products (biochar).

Mark Fuchs November 15, 2017
Typical Odor Causing compounds from Composting

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Chemical Formula</th>
<th>Primary Odor Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>CH$_3$CHO</td>
<td>Pungent</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH$_3$</td>
<td>Urine, pungent</td>
</tr>
<tr>
<td>Butyric acid</td>
<td>CH$_3$CH$_2$CH$_2$COOH</td>
<td>Rancid, sour</td>
</tr>
<tr>
<td>Diethyl sulfide</td>
<td>C$_2$H$_5$C$_2$H$_5$S</td>
<td>Garlic</td>
</tr>
<tr>
<td>Dimethyl amine</td>
<td>CH$_3$CH$_3$NH</td>
<td>Fishy</td>
</tr>
<tr>
<td>Dimethyl sulfide</td>
<td>CH$_3$CH$_3$S</td>
<td>Foul, decayed</td>
</tr>
<tr>
<td>Ethyl mercaptan</td>
<td>C$_2$H$_5$SH</td>
<td>Decayed cabbage</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>HCHO</td>
<td>Pungent</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>H$_2$S</td>
<td>Rotten eggs</td>
</tr>
<tr>
<td>Indole</td>
<td></td>
<td>Fecal</td>
</tr>
<tr>
<td>Methyl mercaptan</td>
<td>CH$_3$SH</td>
<td>Foul, decayed</td>
</tr>
<tr>
<td>Phenol</td>
<td>C$_6$H$_5$OH</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Propyl mercaptan</td>
<td>C$_3$H$_7$SH</td>
<td>Unpleasant</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>SO$_2$</td>
<td>Pungent</td>
</tr>
<tr>
<td>Trimethyl amine</td>
<td>CH$_3$CH$_3$CH$_3$N</td>
<td>Fishy, ammonical</td>
</tr>
<tr>
<td>Valeric acid</td>
<td>CH$_3$CH$_2$CH$_2$COOH</td>
<td>Body odor</td>
</tr>
</tbody>
</table>
Compost Emissions from control, 5% ash, and 5% biochar mixtures in the first 2 weeks

Mark Fuchs November 15, 2017
Cumulative CO$_2$, CH$_4$, & N$_2$O during compost & biochar blended compost
Evolution of CO$_2$, CH$_4$, NH$_3$, N$_2$O, extractable NH$_3$ & TKN during composting

DFSS – De-watered fresh biosolids
WS – Wheat Straw
L – Lime
B – Biochar

Awasthi et al, 2016
June 4, 2014 – Dryland Winter Wheat Field Plots
Amended Lime & Gasified Biochar—Gady Farm, Rockford, WA

S.M. Griffith, G.M. Banowetz, D. Gady
USDA-ARS-FSCRIU, Corvallis, OR in cooperation with Synthigen Inc.
Biochar co-compost, Basil greenhouse study at WSU

A

Eleanora Basil

B

TSQ Basil

Mark Fuchs November 15, 2017
Biochar co-compost, Basil greenhouse study at WSU

![Bar chart showing fresh weight comparison for Mint, TSQ, and SW treatments with different compost and ash + compost treatments.](chart.png)

Mark Fuchs November 15, 2017
Greenhouse gas analysis for 70,000 cows, 20% v/v food waste

<table>
<thead>
<tr>
<th>AD w/ Nutrient Recovery</th>
<th>Atmospheric Carbon offset in MMT CO2e/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD methane capture</td>
<td>0.342</td>
</tr>
<tr>
<td>Co-digestion methane capture</td>
<td>0.611</td>
</tr>
<tr>
<td>Electrical Offset</td>
<td>0.114</td>
</tr>
<tr>
<td>Peat replacement (separated fiber)</td>
<td>0.019</td>
</tr>
<tr>
<td>Bio-Phosphorous (P recovered from digester solids)</td>
<td>0.003</td>
</tr>
<tr>
<td>Bio-Nitrogen (from NH₃ stripping)</td>
<td>0.014</td>
</tr>
<tr>
<td>Total</td>
<td>1.103</td>
</tr>
</tbody>
</table>

Mark Fuchs November 15, 2017
Acknowledgements:

• Chad Kruger, Georgine Yorgey, WSU CSANR scientists and staff
 - Shulin Chen, Manuel Garcia-Perez, Craig Cogger
• Sally Brown – UW, Forest & Environ. Science
• James Amonette – Soil Scientist, PNNL/WSU
• WSU Energy Program
• USDA, ARS - Steve Griffith, Gary Banowetz
• Philip Small, Kelpie Wilson, Gloria Flora, Tom Miles