Nominal licensing is driven by valued (phi-)features

Laura Kalin
Princeton University

Abstract
This short paper lays out the components of a new model of nominal licensing, motivated by novel observations about parallels between the Person Case Constraint and Differential Object Marking. The model revolves around the idea that valued features on nominals—namely, Φ-features and features related to definiteness and animacy—are the sorts of features that need abstract licensing, rather than an abstract Case feature. This model helps us understand where differential marking and featural restrictions occur, and in particular, why it is that subjects and indirect objects, in contrast to direct objects, tend not to be differentially marked or featurally restricted.

1. Introduction

The prevailing model of nominal licensing since Chomsky 2000; 2001 is that all nominals have an “uninterpretable” (and unvalued) Case feature, as well as “interpretable” (and valued) Φ-features. Nominals need abstract licensing because Case, being uninterpretable, must be deleted for the derivation to converge—Case is not a legible feature at LF. In this short paper, I lay out a new model of nominal licensing, motivated by novel observations about parallels between the Person Case Constraint (PCC) and Differential Object Marking (DOM). In particular, I argue for a shift in the traditional paradigm: nominal licensing is driven by the needs of the valued (“interpretable”, legible at LF) features that nominals carry, rather than by abstract Case; whether a nominal needs licensing—and in what configurations a nominal can be licensed—therefore depends on its (Φ-)features. The approach pursued here finds precursors in earlier work, including in particular Danon 2006 and Rezac 2011. (For an earlier and somewhat different version of this proposal as an account of DOM, see Kalin 2018.)

The paper is laid out as follows. §2 briefly covers the empirical motivation for a new model of nominal licensing; for more detail, see Kalin 2017. §3 introduces the ingredients of this new model, and §4 shows how it can account for canonical instantiations of the PCC and DOM in a unified way.

2. The motivation for a new model

The PCC and DOM are crosslinguistically common morphosyntactic phenomena that revolve around nominals behaving differently based on which features they bear, in particular, Φ-features and features related to definiteness and animacy. DOM can be stated as in (1):

(1) Differential Object Marking (Comrie 1979, Bossong 1991, i.a.): Objects high in definiteness and/or animacy must be overtly marked via case or agreement.

Take, for example, object marking in Hebrew, (2) (Danon 2006; OM stands for “object marker”; bolding is added here and throughout):

(2) a. Dan kara *(et) ha-itonim.
 Dan read OM the-newspapers
 ‘Dan read the newspapers.’
b. Dan kara (*et) (kama) itonim.

Dan read OM some newspapers
‘Dan read (some) newspapers.’

The morpheme *et obligatorily marks definite objects, and is banned with indefinite objects. Languages differ as to whether they display DOM, which scales are at play, and where the cut-off point is between marked and unmarked objects on these scales.

The PCC at first glance seems to be very different from DOM, as stated in (3) and illustrated in Catalan in (4) (Bonet 2008):

(3) The Person Case Constraint (canonical strong version, Bonet 1991): In a combination of a weak direct object and a weak indirect object, the direct object has to be third person.

(4) a. *A-l director, me li ha recomanat la Mireia.
 to-the director 1SG 3SG.DAT has recommended the Mireia
 ‘As for the director, Mireia has recommended me to him.’

b. El director, me 1^ha recomanat la Mireia.
 the director 1SG 3SG.ACC-has recommended the Mireia
 ‘As for the director, Mireia has recommended him to me.’

What we see in Catalan is that a 3rd person indirect object (dative clitic) paired with a 1st person direct object (accusative clitic) is ungrammatical, (4a), while the reverse is grammatical, (4b).

Many syntactic accounts of DOM and the PCC hold that these effects occur because some nominals have additional licensing needs beyond Case. A typical answer for why specific and definite nominals are special is that such nominals must leave VP (Diesing 1992, Bhatt and Anagnostopoulou 1996, i.a.). A typical answer for why 1st/2nd person nominals are special is that person features need licensing (Anagnostopoulou 2003, Béjar and Rezac 2003, i.a.), along the lines of (5).

(5) Person Licensing Condition (Béjar and Rezac 2003): Interpretable 1st/2nd-person features must be licensed by entering into an Agree relation with an appropriate functional category.

Previous accounts of DOM and the PCC thus treat them as distinct phenomena and require a proliferation of licensing conditions.

At the right level of abstraction, many commonalities between DOM and the PCC become apparent. (See Kalin 2017 for a much more detailed discussion of these facts.) First, both DOM and the PCC are about two nominals: DOM crucially applies to an object, which implies the presence of a subject, and the PCC affects a direct object under an indirect object. Second, both can be described (in their canonical versions, at least) as targeting/restricting just the lower of the two nominals, as reflected in (1) and (3).

Third, both phenomena can be restated in terms of a “rescue” or “repair” for an illicit, featurally-triggered configuration: The direct object in a PCC configuration cannot be 1st/2nd person, unless there is a rescue/repair, such as the addition of case or an adposition, as seen in the Catalan PCC repair in (6) (Bonet 2002:953; cited by Walkow 2012), with the addition of the preposition a, cf. (4a):

(6) M’ha recomanat *(a) tu per a la feina la subdirectora.
 1-has recommended P 2 for the job the deputy.director
 ‘The deputy director has recommended you to me for the job.’

Along the same lines, the object in a DOM configuration cannot be (e.g.) specific, unless there is a special marker, such as a case marker or adposition, as seen in Spanish DOM in (7) (Rodríguez-Mondoñedo 2007).

(7) Bes-ó *(a) María.
 kiss-3SG.PAST P Mary
 ‘He kissed Mary.’
What these facts suggest is that DOM and the PCC are about licensing, and that there is a need for special licensing in certain positions—direct object position generally (DOM), but especially under an indirect object (the PCC).

Fourth, the higher of the two implicated nominals involved in the PCC or DOM (again, at least in their canonical versions) is immune from the effect: subjects and indirect objects are not similarly restricted or differentiated the way that direct objects are. Fifth, if the higher nominal in the configuration is removed, the effect (typically) disappears: removing the indirect object in a PCC configuration allows the direct object to be 1st/2nd person without a special “repair”, and removing the subject in a DOM configuration (e.g., via passivization) typically results in the object being promoted and no longer treated differentially. This strongly suggests that DOM and the PCC arise due to intervention of some sort by this higher argument.

Sixth, different versions of DOM and the PCC surface based on language-specific choices about which features matter, giving rise to (e.g.) the super strong PCC (Kambera; Doliana 2013), the weak PCC (Sambaa; Riedel 2009), and DOM based on both animacy and specificity (Kannada; Lidz 2006). And finally, both DOM and the PCC appear outside of their “canonical” environments, e.g., DOM on the subjects of nominalizations (Kornfilt 2008), and the PCC affecting the direct object in transitive clauses (Kalin and van Urk 2015).

In sum, DOM and the PCC are general configurational effects triggered by the valued features on the lower of two nominals, with certain valued features requiring the presence of an additional licenser, as seen through overt marking. All of these abstract commonalities across DOM and the PCC call out for a unified account of the phenomena. Apart from helping us understand why DOM and the PCC occur, such an account must explain why it is that some nominals in DOM/PCC languages are not marked differentially or restricted, namely, subjects and indirect objects.

3. **A new model of nominal licensing**

What DOM and the PCC are conspiring to tell us is that valued nominal features are what crucially matter for abstract nominal licensing, and that there is something about object position that is vulnerable in this respect. The remainder of this paper is devoted to laying out the details of an account of nominal licensing that can naturally capture and unify DOM and the PCC as related phenomena. Apart from helping us understand why DOM and the PCC occur, such an account must explain why it is that some nominals in DOM/PCC languages are not marked differentially or restricted, namely, subjects and indirect objects.

3.1. **Features and valuation**

The first component of the account involves recognizing two major categories of nominal features—[\(\pi\)] features and what I call [\(\&\)] features. These meta categories, [\(\pi\)] and [\(\&\)], each subsume a number of privative nominal features, as represented in the feature geometry in (8).

2 Exceptions to this are found in some languages, e.g., Hindi, which allows the retention of DOM under passivization (Bhatt 2007).
3 It may be that animacy-related features are in fact dependent on the [\(\pi\)] node, in some or all languages. This may be why, in some languages, animate nominals are also targeted by PCC effects (Ormazabal and Romero 2007, Richards 2008, Harbour 2017).
4 There is robust morphological and semantic evidence that nominals bear features beyond person, number, and gender. The feature [\textit{specific}] is needed, for example, to characterize the distribution of determiners and classifiers crosslinguistically (Haspelmath 1997, Lyons 1999, Cowper and Hall 2002, 2014, Ionin 2006, Simpson et al. 2011). Animacy-related features are also attested crosslinguistically, for example, in verbal-marking in Algonquian languages (Piggott 1989, Wiltschko and Ritter 2014, i.e.) and Abkhaz (Hewitt 1979, cited by Mithun 1986), and nominal marking in Selayarese (Finer 1997).
Nominal licensing is driven by valued (ϕ-)features

(8) ϕ-feature geometry (expanded/altered from Harley and Ritter 2002)

\[
\begin{array}{c}
\phi \\
\pi \\
\text{[PARTICIPANT]} \\
\text{[AUTHOR]} \\
\text{[FEMININE]} \\
\text{[PLURAL]} \\
\text{[SPECIFIC]} \\
\text{[DEFINITE]} \\
\text{[ANIMATE]} \\
\text{[HUMAN]}
\end{array}
\]

All nominals contain the basic components of \([ϕ]\), namely, \([ϕ]\), \([π]\), and \([y]\). I assume that these major featural categories are introduced by \(n\) in the syntactic formation of a nominal, (9). Other nominal features are introduced by higher pieces of nominal structure (Bernstein 1991, Picallo 1991, Ritter 1991, i.a.), as shown for example for a 1st person plural feminine nominal (pronoun) in (10).

(9) \(nP\)

\[
\begin{array}{c}
n \\
\phi \\
\pi \\
y
\end{array}
\]

(10) \(PersonP \; (= \text{1PL.FEM})\)

\[
\begin{array}{c}
\text{Person} \\
\text{[PARTICIPANT]} \\
\text{[AUTHOR]} \\
\text{Number} \\
\text{[PLURAL]} \\
\text{Gender} \\
\phi \\
\pi \\
y
\end{array}
\]

The nominal features introduced inside of a nominal’s structure collect on the highest projection inside the nominal, e.g., by feature unification, union merge, or feature-sharing.\(^5\) In this way, nominal features are available as a bundle to processes originating outside of the nominal, such as agreement.

What is the nature of agreement and “valuation” in a system with privative features? I follow Béjar (2003) and Preminger (2011; 2014) in taking \(ϕ\)-probes to be placeholders for a snippet of the feature geometry. In such a system, valuation amounts to copying the snippet of the feature geometry targeted by

\(^5\)For concreteness, one approach that can be extended to accomplish this is that of Danon (2011). Danon makes use of feature-sharing Agree (Frampton and Gutmann 2006, Pesetsky and Torrego 2007), taking each projection in the nominal to both introduce its own features as well as Agree with (and thus “share”) the features of its sister. Adapted for our purposes here, we can take every feature introduced in the nominal to entail the presence of the feature-geometric nodes that the feature is dependent on; this will necessarily always include \([ϕ]\), the root node. The presence of this \([ϕ]\) node in each head’s feature bundle could plausibly trigger the copying/sharing of the nodes/features contained under \([ϕ]\) in the head’s sister. (See the discussion above (11) about “placeholders”.) As the nominal is built incrementally, this will ensure that every feature is passed upwards.
the probe; all features that entail the probe’s feature (i.e., all features that are dependent on that feature) are copied. In (11), then, the entire set of features is copied from the subject to T.

(11)

So far we have probes (placeholders for snippets of a feature geometry), (12a), and goals (snippets of a feature geometry), (12b). In addition, I propose that certain \(\varphi \)-features on nominals are derivational time bombs (in the Preminger 2011; 2014 sense), indicated with a \(\Theta \). (12c). Features that are derivational time bombs are comparable in some ways to the “uninterpretable” features of Chomsky (2001): these features must be licensed in order for the derivation to converge; if they are not licensed, the derivation “blows up”.6

(12) Feature types
a. \([F:----]=\) unvalued/placeholder (= a probe)
b. \([F]=\) valued/snippet (= a potential goal)
c. \([F\Theta]=\) valued/snippet (= a potential goal, derivational time bomb)

3.2. Licensing and licensers

How are nominals licensed, i.e., how are \(\varphi \)-features that are derivational time bombs defused? Through Agree: when any such feature, \([F\Theta]\), is copied to a probe/place-holder that is outside of the extended projection that introduced the feature,7 \([F\Theta]\) is “defused”. The basic “defusing” (licensing) schema:

(13)

6 The feature ontology of Pesetsky and Torrego (2007) allows for valued features to be uninterpretable, but here, what seems equivalent to “uninterpretability” \(\Theta \) is simply a formal mechanism that causes a crash if the feature is not properly licensed (see §3.2). Since this involves disconnecting interpretability from semantics entirely, I do not use the term “uninterpretable” for \(\Theta \). Note, however, that \(\Theta \) is in fact the only uninterpretable-like component of the proposed system, as I do not take probes to be uninterpretable (following Preminger 2011; 2014), nor do I take Case to be uninterpretable on nominals (as will be discussed briefly in §5).

7 The requirement that the copying be “outside of the extended projection that introduced the feature” is necessary in light of fn. 5.
The identity of F in $[F\phi]$ will compel agreement with different sorts of probes, since to be licensed, $[F\phi]$ must be a part of the snippet copied to the probe.

The final components here are determining where licensers are located in the clause, and when these licensers are present. Building on my own earlier work (Kalin 2018), which in turn adapts the idea from a number of other earlier works (Levin and Massam 1985, Bobaljik 1993, Laka 1993; 2000, Rezac 2011), I take clauses to typically have one obligatory licenser (ϕ-probe), in the middlefield. An obligatory licenser is a ϕ-probe that is merged in every clause. Apart from obligatory licensers, there are secondary licensers, which are merged/active only when needed for the derivation to converge, i.e., only when a nominal feature that needs licensing would otherwise go unlicensed. Languages can differ as to the location of obligatory and secondary licensers. A “typical” NOM/ACC language might have the obligatory/secondary licenser configuration in (14):

\[
\begin{align*}
\text{(14)} & \quad TP \\
& \quad T \\
& \quad \left[\phi:\text{obligatory}\right] \\
& \quad \ldots \\
& \quad \ldots \\
& \quad vP \\
& \quad \left(\left[\phi:\text{secondary}\right] \quad \ldots \\
& \quad v \quad VP \\
& \quad \ldots \\
& \quad V
\end{align*}
\]

Following Kalin (2018), I adopt (15), intended to be neutral across various global last resort mechanisms or trans-derivational constraints (e.g., Safir 1993, Chomsky 1995; 2000, Bošković 1997), but especially similar in spirit and effect to that of Rezac (2011):\footnote{Rezac 2011 differs from the proposal here in a number of core ways, including the present proposal’s (i) separation of nominal licensing from Case, (ii) extension to DOM and DOM-related features, and (iii) consistent feature bundles across different arguments.}

\[
\text{(15) Licensing Economy Principle:} \\
\text{A secondary licenser is activated iff the derivation will otherwise not converge.} \footnote{As will become clear in the discussion of the PCC in §4.2, it seems that languages can have more than one secondary licenser. How it is decided which secondary licenser is activated in which structures is outside the scope of this paper.}
\]

The effect of the Licensing Economy Principle is that a derivation lacking a secondary licenser is preferred if such a derivation will converge. The reason I take (15) to be global/trans-derivational is that a secondary licenser might be syntactically lower than an obligatory licenser; therefore, the system must allow either for a derivation to “restart” with a minimal change (the activation of a secondary licenser) or for the comparison of multiple parallel derivations (with preference for the derivation with the fewest secondary licensers).

The basic components of the account are summarized as follows. All nominals minimally bear $[\phi]$, $[\pi]$, and $[\varepsilon]$, with other features distributed throughout the nominal, and all features collecting on the highest projection of the nominal. All nominals are therefore visible to all ϕ-probes, as no nominals lack ϕ-features altogether. Certain (valued) nominal features are derivational time bombs, and nominals bearing such features need licensing. Nominals are licensed (i.e., $[F\phi]$ is defused) by entering into (DP-external) Agree. Clauses typically have exactly one obligatory licenser, with secondary licensers merging only when needed for convergence, as regulated by the Licensing Economy Principle, (15).

What will this get us? The feature [PARTICIPANT] seems to crosslinguistically be a ϕ: 1st/2nd person nominals always need to agree with a ϕ-probe, π-probe, or PART-probe. (This approximates the PLC, (5.).) Languages vary as to which other nominal features are ϕs, resulting in different types of DOM, and requiring nominals that bear these features to agree with a ϕ-probe or π-probe. Whenever an $[F\phi]$ is in a position where it will fail to be defused (due to intervention), a secondary licenser is activated.

\[
\text{(14) T} \\
\text{[\phi:obligatory]} \\
\text{(...)} \\
\text{vP} \\
\text{([\phi:secondary]} \\
\text{(...)} \\
\text{v} \\
\text{VP} \\
\text{(...)} \\
\text{V}
\]
4. Deriving DOM and the PCC

What unifies DOM and the PCC is that both phenomena are driven by valued nominal features that require licensing, and both reveal configurations where a certain type of nominal feature fails to be licensed, unless a licenser is added. What differentiates DOM from the PCC is that the nominal features involved in the PCC have stricter licensing requirements and so are licensed in fewer configurations as compared to the nominal features involved in DOM.

Throughout this section, to show clearly how this system works to produce DOM and PCC effects, I’ll use a “toy” example of a language that has a nominative/accusative alignment, with accusative case showing up only on specific objects, and with a strong PCC effect in ditransitives. Such a language would have the following “parameters” set in the proposed system:

(16) a. T is an obligatory licenser (language specific)
b. v is a secondary licenser (language specific)
c. [SPECIFICophilia] (language specific)
d. [PARTICIPANTophilia] (universal)

4.1. Accounting for DOM

Let’s consider clauses with one argument. T is an obligatory licenser, and all nominals are visible (all bear [φ], [π], and [ς]; only features beyond these are shown in the trees), so Agree is successful. The features on the nominals in (17) are given for illustration purposes—nothing hinges on any particular feature here.

(17) a. T is an obligatory licenser
b. v is a secondary licenser

c. [SPECIFICophilia]
d. [PARTICIPANTophilia]

What (17) shows is that, whether the sole argument of an intransitive clause needs it (bears an [Fophilia]) or not (no [Fophilia]), and whether this nominal is an internal or external argument, such a nominal will be licensed. This is because the obligatory licenser always probes, and the sole argument of an intransitive will always be the closest nominal to the obligatory licenser. Intransitive subjects are therefore not differentially marked, nor subject to featural restrictions.

When a clause has more than one nominal argument, the obligatory licenser will agree with the higher nominal, again even if the nominal doesn’t “need” it (doesn’t bear an [Fophilia]). The higher nominal is thus an interveners, since it blocks the obligatory licenser from getting to a lower nominal that potentially could need licensing. If the lower nominal does not, in fact, need licensing (it lacks an [Fophilia]), then the derivation will succeed with just the obligatory licenser; the lower nominal will escape licensing altogether, thereby remaining unlicensed, as in (18). The Licensing Economy Principle, (15), ensures that v cannot be activated superfluously to license such an object. However, if the lower nominal does bear a feature that needs licensing (it bears an [Fophilia]), (15) will compel the secondary licenser, v, to be activated; the only derivation that now succeeds is one with the secondary licenser, (19), and it will succeed regardless of the type of feature(s) bearing a φ. (Note that hereafter, I use subjects that lack φ to show that even φ-less nominals in this position get licensed and are interveners; all these nominals could, however, bear φ.)
Nominal licensing is driven by valued (phi-)features

(18) TP
 /\ \vP
 / \ \
 NP [PLURAL FEMININE] [FEMININE]

(19) TP
 /\ \vP
 / \ \
 NP [PLURAL FEMININE] [FEMININE]

(17)–(19) show how specificity-based DOM arises. A lone nominal or the higher nominal of two nominals will always be licensed by T, so subjects behave uniformly across clauses. On the other hand, the lower of two nominals will be licensed when it is specific, (19), and not when it is not, (18). Assuming a relationship of some kind between licensing and morphological marking, this will result in only specific objects being marked (or, at the very least, a difference in marking between objects with and without \(\phi \)). Note that a [PARTICIPANT] in object position will also be able to be fully licensed in (19), and so the direct object of a transitive can freely have any features, so long as the secondary licenser is activated.

One payoff here is an account of DOM that does not need some nominals to be “invisible” to case and agreement processes (see, e.g., Massam 2001, Danon 2006, Lyutikova and Pereltsvaig 2015), and as such does not require subjects to have special properties/features as compared to objects. Another payoff is that this account does not require (but is certainly compatible with) object shift to produce DOM (e.g., Bhatt and Anagnostopoulou 1996, Baker and Vinokurova 2010, López 2012). (See Kalin (2018) for reasons these components of many DOM accounts are problematic.) Languages with specificity-based DOM that look like the toy example above are Turkish (Enc 1991) and Amadiya in the perfective (Kalin 2015). Other DOM patterns that can be derived include animacy-based DOM, as in Palatinate German (Philipp Weisszer p.c., Kalin 2017), and DOM that appears on both animate nominals and specific nominals, as in Kannada (Lidz 2006).\(^\text{10}\) If a language does not have DOM, i.e., there is uniform object marking or no object marking at all, then this language might have [v\(\phi \)] or [\(\phi \)], or there may be more than one obligatory licenser.

Another type of language derived in this system is one where ergative-marking on a subject is conditioned by the features of the object—in Niuean, for example, ergative case appears on the transitive subject only when the object is specific, and not when it is nonspecific (Massam 2001). Such a language would differ from the toy example above only in \(v \) being a secondary licenser that licenses its specifier, e.g., as an inherent licenser. In this case, we expect T (absolutive) to license the transitive subject when the object does not need licensing, but when the object does need licensing, the activation of \(v \) licenses the subject

\(^{10}\)It is less straightforward to model DOM that shows up on nominals only if they have a certain combination of features, as in Spanish. This could be accounted for in the current system by positing a feature unique to nominals that are both specific and human, or by positing that one of the features involved is a derivational time bomb only in the context of the other relevant feature.
specially (ergative) leaving T to license the object (absolutive).

4.2. Accounting for the PCC

In our toy example language from above, the subject is a (non-defective) intervener between T and a direct object. If the direct object does not bear any feature that needs licensing (i.e., the object nonspecific), then this object is allowed and escapes licensing. If the object bears an \([\mathbf{F}]\) of any kind, however, this will compel the activation of a secondary licenser, \(v\), as in (19); \(v\) then has an unencumbered path to licensing the object, and so an object bearing any sort of feature can be licensed in this position. This results in DOM.

PCC configurations are those where a licenser is blocked by a defective intervener from reaching a nominal that might need licensing. In the position of such a nominal, some features can be licensed, while others cannot, potentially necessitating that a secondary licenser that is immediately local to the nominal that needs licensing be activated. Specifically, I adapt components of Anagnostopoulou (2003), Béjar and Rezac (2003), and Preminger (2011; 2014): (i) \(\varphi\)-probes decompose into \([\pi:_]\) and \([\varphi:_]\); (ii) indirect/applied objects are licensed by the head that introduces them (Application); and (iii) already-licensed nominals on the path of a probe are defective interveners, allowing only the \([\varphi:_]\) component of the \(\varphi\)-probe to see past the intervener.\(^\text{11}\)

Recall that in the system proposed here, a nominal containing \([\text{PARTICIPANT}___]\) needs to agree with a \(\varphi_\)-probe, \(\pi_\)-probe or complete \(\varphi_\)-probe in order to be licensed, i.e., in order to be part of the copied snippet of features. As a result, such a nominal will not be licensed in a configuration where a defective intervener sits between a licenser and the nominal, because in such cases, only a \(\pi_\)-probe reaches the lower nominal. A nominal containing \([\text{SPECIFIC}___]\), on the other hand, needs only to agree with a \(\pi_\)-probe (or \(\varphi_\)-probe), and so is permitted in such a configuration. This predicts a three-way split induced in the direct object position under an applied object. First, a direct object bearing no features that need licensing will compel no secondary licenser to merge and will go unlicensed/unmarked, (20).

\(^\text{11}\)At least two different sorts of reasons have been proposed as to why it is that a person-licenser cannot see past a defective intervener but a number-licenser can. One type of proposal (see, e.g., Anagnostopoulou 2003) is that the \(\pi_\)-probe actually gets to probe before the \(\varphi_\)-probe (which is just a \#-probe in these accounts) does. When the \(\pi_\)-probe encounters the closest nominal to it and finds that it is already licensed, the \(\pi_\)-probe clitic-doubles the argument, rendering the argument an A-trace and so invisible for further probing; then, when the \(\varphi_\)-probe looks into its c-command domain, it only sees the lower nominal—the intervener is at this point invisible. A different type of proposal (e.g., Rezac 2008) holds that, at the point when \(v\) is reached, the intervener only has a visible \(\pi_\)-feature; this partial-visibility of the nominal’s features is a result of it having already been licensed. So, when the probes on \(v\) look into their c-command domain, the \(\pi_\)-probe can see the intervener but the \(\varphi_\)-probe cannot—the \(\varphi_\)-probe only sees the lower nominal. Note that both of these types of explanations rely on featurally-based relativized minimality (Rizzi 2001, Starke 2001). Note also that we can in fact hold constant across all derivations the decomposition of \(\varphi_\)-probes into a \(\pi_\)-probe and a \(\varphi_\)-probe; when the closest nominal is not defective, both probes simply agree with that nominal.
Nominal licensing is driven by valued (PHI-)features

Note that in (20), there are two obligatory licensers—there is licensing from Appl to the argument it introduces, and (canonical) licensing of the subject from the obligatory licenser, T. If Appl is generally taken to license any argument it itself introduces (an applied argument), then indirect objects are predicted to be uniformly marked/licensed, just like subjects (cf. §4.1). This holds across (21) and (22) as well. (Just as for subjects, I use indirect objects in these structures that lack \(\imath \) simply to illustrate their insensitivity to the \(\imath \); indirect objects could bear \(\imath \) and be successfully licensed by Appl.)

The second prediction here is that a direct object bearing a \([\imath] \) feature that needs licensing, such as \([\text{SPECIFIC} \imath] \), will compel the activation of a secondary licenser and will successfully be licensed by it, (21).

(21)

While the secondary licenser, on \(v \), is partially blocked from reaching the direct object by the defective intervener in spec-ApplP, the \(\imath \)-component of this licenser still reaches the direct object. Since \([\text{SPECIFIC} \imath] \) is dependent on/entails \([\imath] \), \([\text{SPECIFIC} \imath] \) is part of the snippet that is copied to \(v \), and so is licensed. On the surface, what this will look like is a 3rd person nominal getting DOM in a ditransitive.

Finally, a direct object bearing a \([\pi] \)-dependent feature that needs licensing will not be able to be licensed by \(v \), and so 1st/2nd person nominals cause a crash in this position/configuration, (22).

(22)

(22) crashes because \([\text{PARTICIPANT} \imath] \), carried by 1st/2nd person nominals, will not be part of the snippet
copied by the x-probe of v—even though v is activated as a secondary licenser here. In order for a direct object like that in (22) to be licensed, then, there must be some additional “repair” (Bonet 1991; 1994, Rezac 2011, Walkow 2013): either an even more local secondary licenser must be activated, as is found in the Catalan PCC repair in (6), or the offending nominal must be “camouflaged”, such that it no longer has a syntactically visible/unlicensed [PARTICIPANT], as is found in Georgian, Greek, and Arabic PCC repairs.

We see the prediction of (20)–(22), a three-way split, borne out in Senaya (Neo-Aramaic). Senaya has specificity-based DOM expressed via differential agreement on the verb: specific objects trigger agreement, while nonspecific objects do not, (23) (Kalin 2018).

(23) a. Āna (xa) ksūta kaw-an.
 I a book.F write.IMPF-SBJ.1FS
 ‘I will write a book (e.g., someday, about something, I don’t know what).’

b. Āna (xa) ksūta xaz-an-ā.
 I a book.F see.IMPF-SBJ.1FS-OBJ.3FS
 ‘I see a (specific) book (e.g., on the table).’

In ditransitives in Senaya with a weak (agreeing) indirect object, a specific direct object triggers agreement on the verb, (24a), cf. (21). However, a 1st/2nd person direct object is disallowed (without a repair), (24b), cf. (22), while a nonspecific direct object simply does not agree, (24c), cf. (20). (DO agreement boxed.)

(24) a. Āna maxw-an-ox=ā
 I show:IMPF-SBJ.1FS-IO.2MS=aux-DO.3FS
 ‘I (will) show her to you.’ (√IO > specific 3.DO; marked object)

b. *Āna maxw-an-ā=et
 I show:IMPF-SBJ.1FS-IO.3FS=aux-DO.2MS
 Intended: ‘I (will) show you to her.’ (∗IO > 2.DO; banned object)

c. Āna xa ksūta maxw-an.
 I one book.F show:IMPF-SBJ.1FS-IO.2MS
 ‘I (will) show a/some book(fem.) to you.’ (√IO > nonspecific 3.DO; unmarked object)

The repair for (24b) is for the indirect object to be licensed independently of verb agreement, through a preposition; this then allows the direct object to fully agree on the verb.

Overall, the payoff here is an understanding of the environments that induce DOM and the PCC. The PCC is triggered in environments where a defective intervener separates a nominal from a licenser (LICENSER > DEFECTIVE INTERVENER > [Fฤษ]), while differential marking appears in environments where such an intervener is non-defective (LICENSER > INTERVENER > [Fฤษ]).

5. Conclusion

The account of nominal licensing proposed here builds on a diverse body of research, including the divorcing of “uninterpretability” from having a value (Pesetsky and Torrego 2007, i.a.), the proposal that not all nominals need abstract licensing (Danon 2006, Ormazabal and Romero 2013), the distinction between obligatory and secondary licensors (Levin and Massam 1985, Bobaljik 1993, i.a.), the recognition that 1st/2nd person features need special licensing (Anagnostopoulou 2003, Béjar and Rezac 2003, i.a.), a last-resort model of PCC repairs (Rezac 2011), and the idea that convergence may require valued features to be shared (given to an unvalued feature) (Wurmbrand 2014). The further steps taken here are (i) the proposal that (ϕ)-features apart from [PARTICIPANT] can need licensing, and that in fact it is only these features (along with [PARTICIPANT]) that need licensing, and (ii) the characterization of DOM and the PCC as arising due to intervention. It is important to note that while Case is not a core component of the licensing system, the proposal is still compatible with nominals bearing an abstract and unvalued Case feature; it just must be that this Case feature is not a derivational time bomb.
There is, of course, a lot left to work out, such as the relation between abstract licensing and surface morphology—including case, agreement, and clitics. Further, a better understanding is needed of why some nominal features need licensing in the first place. One possibility is that these features are those that need to be anchored to the speech act to be interpreted (in the spirit of Ritter and Wiltschko 2014).

References

Cowper, Elizabeth and Daniel Currie Hall. 2014. The features and exponence of nominal number. Lingu e e Linguaggio 13: 63–82.

Nominal Licensing is driven by valued (phi-)features

