Phonon-Induced Population Dynamics and Intersystem Crossing in Nitrogen-Vacancy Centers

M. L. Goldman,1,* A. Sipahigil,1 M. W. Doherty,2 N. Y. Yao,1 S. D. Bennett,1 M. Markham,3 D. J. Twitchen,3 N. B. Manson,2 A. Kubanek,1 and M. D. Lukin1

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Australian Capital Territory 0200, Australia
3Element Six Ltd, Kings Ride Park, Ascot SL5 8BP, United Kingdom

(Received 13 June 2014; revised manuscript received 16 December 2014; published 8 April 2015)

We report direct measurement of population dynamics in the excited state manifold of a nitrogen-vacancy (NV) center in diamond. We quantify the phonon-induced mixing rate and demonstrate that it can be completely suppressed at low temperatures. Further, we measure the intersystem crossing (ISC) rate for different excited states and develop a theoretical model that unifies the phonon-induced mixing and ISC mechanisms. We find that our model is in excellent agreement with experiment and that it can be used to predict unknown elements of the NV center’s electronic structure. We discuss the model’s implications for enhancing the NV center’s performance as a room-temperature sensor.

DOI: 10.1103/PhysRevLett.114.145502 PACS numbers: 63.20.kd, 42.50.Md, 63.20.kp, 78.47.-p

The nitrogen-vacancy (NV) center in diamond has emerged as a versatile atomlike system, finding diverse applications in metrology and quantum information science at both ambient and cryogenic temperatures. At room temperature, the NV center has broad appeal as a sensor—e.g., for nanoscale, biocompatible thermometry [1], magnetometry [2], pressure sensing [3], and electric field sensing [4]. NV centers also have the potential to serve as quantum registers featuring high-fidelity quantum gates [5] and second-long coherence times [6]. All of these applications depend critically on a spin-dependent nonradiative transition into a metastable state, the so-called intersystem crossing (ISC), which enables nonresonant optical initialization and readout of the electronic spin state. Despite theoretical [7] and experimental [7–10] efforts, a detailed understanding of the microscopic ISC mechanism has remained an open question. Such an understanding may enable efforts to enhance the NV center’s optical initialization and readout fidelities, or to identify or engineer similar mechanisms in other solid-state defects.

In this Letter, we use resonant optical manipulation of an NV center at cryogenic temperatures to probe the NV center’s interaction with phonons in the diamond lattice. The NV center has a spin-triplet, orbital-singlet ground state (3A2) that is coupled optically to a spin-triplet, orbital-doublet excited state (3E), as shown in Fig. 1(a). We investigate the ISC from the 3E manifold to the intermediate spin-singlet states (|E1,1⟩, |E1,2⟩) and phonon-mediated population transfer within the 3E manifold. We first measure phonon-induced population transfer between |E⟩ and |E⟩, using the effectively closed three-level system shown in Fig. 1(b), to characterize phononic coupling to the orbital electronic state. We build on previous such measurements [11,12], in which population transfer was not shown to be completely suppressed, by adopting techniques that enable highly coherent excitation of the NV center’s optical transitions [13,14].

We next measure the fluorescence lifetimes of |A1⟩, |A2⟩, and |E1,2⟩ and find that the ISC rates from these states differ sharply. Based on these experimental observations, we develop a model of the ISC mechanism that combines spin-orbit coupling, phonon-induced electronic state transitions, and phonon-mediated lattice relaxation. Using our measured phonon-induced mixing rate as an input, we find

FIG. 1 (color). The level structure of the NV center. (a) A schematic illustration of the NV center’s level structure. The intersystem crossing (ISC) process is responsible for shelving into 1E1,2⟩ via the short-lived 1A1⟩ and for pumping into |0⟩. (b) The three-level system of spin-triplet, ms = 0 states used to model phonon-induced mixing and dephasing within the 3E manifold. (c) The states, Hamiltonian matrix elements (λE1,1, λE1,2), and energy scales (Δ, Δ′) involved in the triplet-singlet ISC.
excellent quantitative agreement between our model, our experimental results, and previous observations [7–10].

In our experiment, we use a 1.0 mm diameter solid-immersion lens (SIL) that is fabricated from bulk electronic grade CVD diamond and cut along the (100) crystal plane [15]. The SIL is mounted in a continuous flow helium cryostat that allows us to vary the temperature from 4.8 K to room temperature. We use a laser at 532 nm for nonresonant initialization of the NV center’s charge and spin states, and two tunable external-cavity diode lasers gated by electro-optical amplitude modulators to apply independent resonant pulses at 637 nm. Using photoluminescence excitation (PLE) spectroscopy, we resolve five of the six dipole-allowed $^3A_2 \rightarrow ^3E$ transitions; at zero applied magnetic field and low strain, $|E_1\rangle$ and $|E_2\rangle$ are too close in energy for their transitions from $|\pm \rangle$ to be resolved.

To measure the mixing rate between $|E_i\rangle$ and $|E_j\rangle$, we measure both the decay rate out of $|E_i\rangle$ by measuring the time scale τ_{Rabi} on which optical Rabi oscillations between $|0\rangle$ and $|E_i\rangle$ decohere. We apply resonant 60 ns pulses and record the arrival times of the resulting phonon sideband (PSB) photons, as the rate of spontaneous emission into the PSB is instantaneously proportional to the population in $|E_i\rangle$ and $|E_j\rangle$ [13,16].

For each data set, we fit τ_{Rabi} from the oscillation decay and extract $\Gamma_{\text{Rad}} = 1/\tau_{\text{Rad}}$ from the pulse’s falling edge, where τ_{Rad} is the radiative lifetime of $|E_i\rangle$. From these two values, we extract

$$\Gamma_{\text{Add}} = \Gamma_{\text{Mix}} + \Gamma_{T_2} = 2 \left(1/\tau_{\text{Rabi}} - 3/4 \Gamma_{\text{Rad}} \right),$$

the additional decoherence rate of the Rabi oscillations due to processes other than optical decay to $|0\rangle$ [16,21]. Γ_{Mix} and Γ_{T_2} are the phonon-induced mixing and dephasing rates, respectively. Typical Rabi oscillations and the derived values of Γ_{Add} are shown in Fig. 2(a). The T^4 scaling of Γ_{Add} indicates that the additional Rabi decoherence is due primarily to mixing between $|E_i\rangle$ and $|E_j\rangle$ mediated by two E-symmetric phonons [11,22]. We infer $\Gamma_{\text{Add}}/2\pi = -0.34 \pm 1.87$ MHz at 5.8 K (95% confidence interval), indicating that phonon-induced mixing is frozen out at low temperature. There also exists a one-phonon emission process whose contribution to the mixing rate scales as $\Delta_{sz}^2 T$ [22]. This contribution is negligible in our experiment because of the small density of states for phonons of frequency $\Delta_{sz} = 3.9$ GHz [23].

We also measure population transfer between $|E_i\rangle$ and $|E_j\rangle$ directly by measuring the depolarization of the emitted ZPL fluorescence. ZPL photons emitted by decay from the $|E_i\rangle$ and $|E_j\rangle$ states have orthogonal linear polarizations (labeled x and y). At 5 and 20 K, we resonantly excite the NV center to $|E_j\rangle$ and collect fluorescence of x and y polarizations, as shown in Fig. 2(b). At both temperatures, the emission is x polarized for small delays, indicating initial decay primarily from $|E_i\rangle$. The emission remains x polarized at 5 K, whereas we observe that emission becomes depolarized at 20 K. Since emission polarization is directly related to the excited state population, this is a direct observation of population transfer between $|E_i\rangle$ and $|E_j\rangle$. We compare the observed population transfer to simulations of rate equations based on the three-level system depicted in Fig. 1(b) [16]. Using the values of Γ_{Add} given by the fit in Fig. 2(a), and using our polarization selectivity and the starting time of the mixing and radiative decay dynamics relative to the excitation pulse as fit parameters, we find good agreement between the observed and simulated fluorescence depolarization [16].

We now turn from the 3E states with $m_s = 0$ ($|E_i\rangle$ and $|E_j\rangle$) to the states with $m_s = 1$ ($|A_1\rangle$, $|A_2\rangle$, and $|E_{1,2}\rangle$). Although the radiative decay rate Γ_{Rad} is the same for all $^3E \rightarrow ^3A_2$ transitions [8,9], one expects from symmetry arguments that $|A_1\rangle$, $|A_2\rangle$, and $|E_{1,2}\rangle$ should exhibit different ISC rates into the spin-singlet states [24]. We can therefore probe population dynamics among these states by exciting the NV center into one state and measuring the decay time of the resulting PSB fluorescence as a function of temperature. A representative measurement is shown in the inset to Fig. 3. From the fluorescence decay time τ_i
measured after excitation into the \(i\)th state, we can calculate the associated ISC rate

\[
\Gamma_i = 1/\tau_i - \Gamma_{\text{Rad}}.
\]

Because the ISC rates from \(|E_{\nu}\rangle\) and \(|E_{\nu}'\rangle\) are negligible \((\Gamma_{E_{\nu}}/2\pi \approx 0.62 \pm 0.21 \text{ MHz} [16])\) compared to the ISC rates from \(|A_1\rangle\), \(|A_2\rangle\), and \(|E_{1,2}\rangle\), we set \(\Gamma_{\text{Rad}}/2\pi = 1/2\pi \tilde{\tau}_{E_{\nu}} = 13.2 \pm 0.5 \text{ MHz}\), where \(\tilde{\tau}_{E_{\nu}}\) is the average lifetime of \(|E_{\nu}\rangle\) extracted from our Rabi decoherence data. The derived values of \(\Gamma_i\) are shown in Fig. 3.

We observe that the \(|A_1\rangle\), \(|A_2\rangle\), and \(|E_{1,2}\rangle\) ISC rates are significantly different at low temperatures, but converge around \(T \gtrsim 22 \text{ K}\). The same two-phonon process that redistributes population among \(|E_{\nu}\rangle\) and \(|E_{\nu}'\rangle\) also does so among \(|A_1\rangle\) and \(|A_2\rangle\). As a result, the observed temperature-dependent ISC rates \((\tilde{\Gamma}_A1\) and \(\tilde{\Gamma}_A2\)) converge to an average of the two unmixed states’ rates \((\Gamma_A1\) and \(\Gamma_A2\)) as the temperature increases. We fit \(\tilde{\Gamma}_A1\) and \(\tilde{\Gamma}_A2\), assuming \(\Gamma_A1 = 0\) and a temperature-dependent \(|A_1\rangle - |A_2\rangle\) mixing rate equal to the measured \(|E_{\nu}\rangle - |E_{\nu}'\rangle\) rate [16]. We find excellent agreement using only \(\Gamma_A1\) as a free parameter, confirming that the same phonon-induced mixing process is evident in both Figs. 2 and 3. The state lifetimes we observe at \(T \gtrsim 22 \text{ K}\) are consistent with those of the \(m_s=0\) and \(m_s=1\) states at room temperature [see Fig. 4(c)], indicating that we have measured the onset of the orbital averaging mechanism that enables the \(3E\) manifold to be treated as an effective spin-triplet, orbital-singlet system at room temperature [25,26].

We now present a theoretical analysis of the ISC mechanism, which is treated in greater detail in Ref. [22]. In the NV center, an axial spin-orbit (SO) interaction \((\propto \lambda \tilde{l}_z s_z)\) is primarily responsible for the fine structure of the \(3E\) manifold while a transverse SO interaction \([\propto \lambda \tilde{l}_x s_x + \tilde{l}_y s_y]\) couples states of different spin multiplicities [27,28]. The ISC occurs in two steps [see Fig. 1(c)]: (i) a SO-mediated transition from a state in the \(3E\) manifold to a resonant excited vibrational level of \(|A_1\rangle\), and (ii) relaxation of the excited vibrational level to the ground (or thermally occupied) vibrational level of \(|A_1\rangle\).

Because \(|A_1\rangle\) and the \(3A_2\) states consist of the same single-particle electronic orbitals, the two states exhibit similar charge density distributions and therefore similar vibrational potentials [30]. The vibrational overlap between the \(3E\) states and \(|A_1\rangle\) is then well approximated by that observed in the PSB of the \(3E \rightarrow 3A_2\) optical emission spectrum. Selection rules imply that only \(|A_1\rangle\) is SO coupled with \(|A_1\rangle\). Thus, SO coupling can mediate a first-order transition from \(|A_1\rangle\) to a resonant excited vibrational level of \(|A_1\rangle\), whereas \(|E_{1,2}\rangle\) must undergo a second-order transition involving electron-phonon coupling with \(|A_1\rangle\) [see Fig. 1(c)]. In principle, \(|E_{1,2}\rangle\) may undergo a first-order transition to a highly excited vibrational level of \(|E_{1,2}\rangle\), but we expect the rate of this transition to be negligible because the \(|A_1\rangle - |E_{1,2}\rangle\) energy spacing (1190 meV [31]) is large compared to the extent of the PSB (~500 meV [30,32]).

The ISC rate from \(|A_1\rangle\) is

\[
\Gamma_{A_1} = 4\pi \hbar \lambda^2 \sum_n \left| \langle \chi_0 | \chi'_n \rangle \right|^2 \delta (\nu_n - \Delta) \\
= 4\pi \hbar \lambda^2 \frac{F(\Delta)}{\delta},
\]

where \(\lambda\) is the transverse spin-orbit coupling rate, \(\Delta\) is the energy spacing between \(|A_1\rangle\) and \(|A_1\rangle\), and \(\delta\) is the Dirac delta function. \(\langle \chi_0 | \chi'_n \rangle\) is the ground vibrational level of \(|A_1\rangle\), and \(\langle \chi'_n | \rangle\) are the vibrational levels of \(|A_1\rangle\) with energies \(\nu_n\) above that of \(|A_1\rangle\). We define the vibrational overlap function \(F(\Delta) = \left| \langle \chi_0 | \chi'_{\Delta} \rangle \right|^2 / \rho(\Delta)\), where the average is over all vibrational levels with energy \(\Delta\) and \(\rho(\Delta)\) is the associated density of states.

At low temperature, the ISC rate from \(|E_{1,2}\rangle\) is

\[
\Gamma_{E_{1,2}} = 4\pi \hbar \lambda^2 \sum_{n,p,k} \frac{\lambda^2_{p,k}}{a^2_k} \left| \langle \chi_0 | \chi'_n \rangle \right|^2 \delta (\nu_n + \omega_k - \Delta) \\
= 2 \frac{\delta}{2 \pi \hbar \gamma_{A_1}} \int_0^{\min(\Delta,\Omega)} \frac{F(-\omega)}{F(\Delta)} d\omega,
\]

where \(\lambda_{p,k}\) is the phononic coupling rate for a phonon of polarization \(p\) and wave vector \(k\), and

\[
J(\omega) = \frac{\pi \hbar}{2} \sum_k \lambda^2_{E_{1,2},k} \delta (\omega - \omega_k) = \eta \omega^3
\]
The lowest-order allowed mechanism would be a third-order process involving two phonons and one SO interaction. Because the SO interaction is symmetric [33], and can therefore only couple states of like symmetry, \(|A_1\) is not SO-coupled to either \(|1\rangle\) or \(|1,2\rangle\) [27,28]. Similar symmetry considerations forbid single-phonon coupling between \(|A_2\rangle\) and \(|1\rangle\), so neither the first- nor second-order processes described above can induce ISC decay from \(|A_2\rangle\). The lowest-order allowed mechanism would be a third-order process involving two phonons and one SO interaction, but we neither expect nor observe an appreciable ISC transition rate due to such a high-order process.

In Fig. 4(a), we plot the prediction of Eq. (3) as a function of \(\Delta\) and the value of \(\Gamma_{A_i}/2\pi = 16.0 \pm 0.6\) MHz extracted from the fits shown in Fig. 3. The broad range of predicted values of \(\Gamma_{A_i}\) arises from the currently imprecise knowledge of the transverse SO coupling rate \(\lambda_{11}\) [34]. The vibrational overlap function is extracted from a previous measurement of the \(3E \rightarrow 3A_2\) emission PSB [30]. The intersection of the measured and predicted values of \(\Gamma_{A_i}\) confines \(\Delta\) to two regions: around 43 meV and from 344 to 430 meV.

We next evaluate \(\Gamma_{E_{1,2}}/\Gamma_{A_i}\), which depends only on electron-phonon coupling parameters and the vibronic overlap function, not on the SO coupling rate. We extract \(\eta = 2\pi \times (44.0 \pm 2.4)\) MHz meV\(^{-3}\), which parametrizes the electron-phonon coupling strength, from the \(E_{1}\) mixing data shown in Fig. 2(a) [16]. In Fig. 4(b), we plot the ratios predicted by Eqs. (3)–(4) [36] and extracted from Fig. 3. We assume no acoustic cutoff energy \((\Omega \rightarrow \infty)\) in order to maximize the range of acoustic phonon modes that contribute to \(\Gamma_{E_{1,2}}\), making the predicted ratio an upper bound. Even so, we find that the predicted and measured ratios are inconsistent for \(\Delta < 148\) meV, which uniquely confines \(\Delta\) to the region from 344 to 430 meV [37].

We scale our model up to higher temperatures [22] and find that, for this range of \(\Delta\), its predictions are consistent with published lifetimes of the \(m_s = 0\) and \(|m_s| = 1\rangle\) states at temperatures between 295 and 600 K, as shown in Fig. 4(c). An additional decay mechanism, which is not captured by our model of ISC decay, significantly shortens the lifetime of the \(m_s = 0\) states above 600 K. This decay mechanism is discussed further in Ref. [22].

We have elucidated, both experimentally and theoretically, the roles that electron-phonon interactions play in NV center dynamics. Further exploration of either of the phonon roles addressed in this Letter may yield intriguing applications. Resonant electron-phonon coupling in the \(3E\) manifold could be used to optically cool a high-\(Q\) diamond resonator [40,41] close to the vibrational ground state [42]. Such efforts would complement the growing interest in using electron-phonon coupling in the \(3A_2\) states to manipulate the electron spin [43,44] or to generate spin-squeezed states of NV ensembles [45]. Further, our understanding of the ISC mechanism may enable efforts to engineer the ISC rate by, for example, applying a large static strain to shift the energy spacings between the spin-triplet and spin-singlet states [3]. Such an advance would provide an across-the-board enhancement to the spin initialization and readout techniques on which room-temperature NV center applications depend. Finally, our experimentally validated ISC model has confined the unknown energy spacing between the \(3E\) and \(|A_1\rangle\) states to a region that can be explored in future optical spectroscopy.

The authors would like to thank J. Maze, A. Gali, E. Togan, A. Akimov, D. Sukachev, Q. Unterreithmeier, A. Zibrov, and A. Palyi for stimulating discussions and experimental contributions. This work was supported by the NSF, CUA, DARPA Quiness program, AFOSR MURI, Australian Research Council, Gordon and Betty Moore Foundation, and Element Six. A. K. acknowledges support from the Alexander von Humboldt Foundation.

\[\Omega = 2\pi \times (44.0 \pm 2.4)\] MHz meV\(^{-3}\)

\[\eta = 2\pi \times (44.0 \pm 2.4)\] MHz meV\(^{-3}\)

\[\Gamma_{E_{1,2}}/\Gamma_{A_i}\]

\[\Omega \rightarrow \infty\]

\[\Delta < 148\] meV

\[\Delta\) to the region from 344 to 430 meV [37].

\[\Delta\) to the region from 344 to 430 meV [37].

\[\Delta\) to the region from 344 to 430 meV [37].

\[\Delta\) to the region from 344 to 430 meV [37].

\[\Delta\) to the region from 344 to 430 meV [37].

[23] Although the one-phonon process contributes negligibly in this experiment, it may cause significant mixing in NV centers, such as those formed by nitrogen implantation or placed inside nanofabricated structures, where damage to the local crystalline structure may induce a large strain splitting. We note that this linear temperature scaling may be evident in the result of a previous measurement of phonon-induced mixing, which used NV centers with strain splittings of 8 to 81 GHz [11].

[34] The axial SO coupling rate \(\lambda_{jj} = 5.33 \pm 0.03 \) GHz is known [35], but the precise value of \(\lambda_{jj} / \lambda_\perp \approx 1 \) remains an open question. As explained in Ref. [22], we have selected \(\lambda_{jj} / \lambda_\perp = 1.2 \pm 0.2 \) as a reasonable confidence interval.

[36] The value of \(\Gamma_{E_{1/2}} \), calculated in Fig. 4(b) includes a correction to Eq. (4) due to a second-order ISC process that uses \(|E_{1/2}\rangle \) as intermediate states instead of \(|A_1\rangle \). This correction, which is described explicitly in Ref. [22], lowers \(\Gamma_{E_{1/2}} / \Gamma_{A_1} \), by 21% at \(\Delta = 148 \) meV.

[37] In this region, we find that the predicted and measured ratios match for cutoff energies of 74 to 93 meV. These values, which are below the Debye energy (194 meV [38]) and close to the energies of the quasilocal phonon modes that dominate the \(^3E \) (64 meV [30,39]) and \(^1A_1 \) (71 meV [32]) PSBs, are physically reasonable.

