Classical prethermal discrete time crystals

Bingtian Ye,1 Francisco Machado,1, 2 and Norman Y. Yao1, 2

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: April 30, 2021)

We demonstrate that the prethermal regime of periodically-driven, classical many-body systems can host non-equilibrium phases of matter. In particular, we show that there exists an effective Hamiltonian, which captures the dynamics of ensembles of classical trajectories, despite the breakdown of this description at the single trajectory level. In addition, we prove that the effective Hamiltonian can host emergent symmetries protected by the discrete time-translation symmetry of the drive. The spontaneous breaking of such an emergent symmetry leads to a sub-harmonic response, characteristic of time crystalline order, that survives to exponentially late times. To this end, we numerically demonstrate the existence of prethermal time crystals in both a one-dimensional, long-range interacting spin chain and a nearest-neighbor spin model on a two-dimensional square lattice.

Discrete time crystals are periodically-driven (Floquet), many-body systems that exhibit robust synchronization at a sub-harmonic frequency of the drive [1]. The first examples—both theoretically proposed and experimentally explored—use strong disorder to prevent runaway Floquet heating [2–6]. In particular, by inducing many-body localization, the disorder prevents the system from absorbing energy from the driving field [7–12]. Since localization relies upon the discreteness of energy levels, this specific approach is intrinsically quantum mechanical and naturally begs the following question: To what extent does time crystalline order require either quantum mechanics or disorder? [13–21]

An elegant, but partial, answer to this question is provided within the framework of Floquet prethermalization in disorder-free systems [23–35]. When the driving frequency, \(\omega \), is large compared to the system’s local energy scales, \(J_{\text{local}} \), Floquet heating is suppressed until exponentially late times, \(\tau_{\text{heat}} \sim e^{\omega/J_{\text{local}}} \). In particular, directly absorbing energy from the drive is highly off-resonant, and heating only occurs via higher order processes that involve multiple (\(\sim \omega/J_{\text{local}} \)) correlated local rearrangements. This simple physical intuition holds for both quantum and classical systems.

In the quantum setting, Floquet prethermalization has an additional feature: There exists an effective Hamiltonian that accurately captures the dynamics of the system until \(\tau_{\text{heat}} \). Interestingly, this effective Hamiltonian can also exhibit a drive-induced emergent symmetry [36, 37]; when this symmetry is spontaneously broken, the dynamics naturally develop the sub-harmonic response characteristic of time crystalline order. Whether such a prethermal discrete time crystal can also exist in classical many-body systems is significantly more subtle; in particular, although classical prethermalization features slow Floquet heating, there is no effective Hamiltonian that accurately captures the prethermal dynamics [32].

In this Letter, we show that the lack of an effective Hamiltonian does not preclude the existence of novel, non-equilibrium phases in classical Floquet systems; we highlight this by explicitly constructing a classical prethermal discrete time crystal (CPDTC). Our main results are three fold. First, we demonstrate that the inability of an effective Hamiltonian to generate the Floquet dynamics is a direct consequence of classical chaos—
small errors at early times lead to exponentially diverging single trajectories. This connection to chaos suggests that one should perhaps forgo the focus on individual trajectories and rather ask whether there is an effective Hamiltonian that captures the prethermal dynamics of an ensemble of trajectories. We show that this is indeed the case. Second, we prove that, much like the quantum case, the effective Hamiltonian can host an emergent symmetry which is protected by the discrete time translation symmetry of the periodic drive. Finally, we propose, analyze and numerically simulate two explicit models of classical prethermal time crystals: (i) a long-range interacting 1D classical spin chain and (ii) a short-range interacting 2D classical spin model on the square lattice.

Prethermalization in classical dynamics.—Consider a classical Floquet Hamiltonian, $H_F(t) = H_F(t + T)$, with period $T = 2\pi/\omega$. For $\omega \gg J_\text{local}$, one can construct a perturbative expansion of the Floquet dynamics in powers of J_local/ω [38]. In general this Floquet-Magnus expansion diverges, reflecting the many-body system’s late-time approach to infinite temperature (via energy absorption from the drive). However, when truncated at an appropriate order, $n^* \sim \omega/J_\text{local}$, the expansion defines a static Hamiltonian, D, which remains quasi-conserved for exponentially long times (under the full Floquet dynamics) [23, 25, 32]:

$$
\frac{1}{N} |D(mT) - D(0)| < m J_\text{local} \cdot O(e^{-\omega/J_\text{local}}),
$$

(1)

where N is the system size and $m \in \mathbb{N}$ is the number of Floquet cycles. To this end, Eqn. (1) precisely formalizes the existence of an intermediate, prethermal regime where the energy density (measured with respect to D) is exponentially well-conserved.

Nevertheless, the question remains: Is D also the effective prethermal Hamiltonian, which generates the dynamics before τ_{heat}? In the quantum setting, the answer is yes [39]. However, in classical systems, D is only proven to faithfully reproduce the Floquet evolution over a single driving period [32]:

$$
|O(T) - O'(T)| \leq O(e^{-\omega/J_\text{local}}).
$$

(2)

Here, O is a generic local observable and $O(T)$ represents its evolution under the full Floquet Hamiltonian [i.e. $H_F(t)$], while $O'(T)$ represents its evolution under D. Note that hereon out, observables with a prime, will always correspond to evolution under D.

Naively, one might expect the single period errors in Eqn. (2) to accumulate additively as one evolves to later times. However, this does not account for compounding effects, where early-time errors propagate through the many-body system and induce additional deviations. In the quantum case, the existence of Lieb-Robinson bounds constrains the propagation of errors and enables one prove that errors grow algebraically in the number of Floquet cycles: $|O(mT) - O'(mT)| \leq m^p \mathcal{O}(e^{-\omega/J_\text{local}})$; this immediately indicates that D is indeed the effective prethermal Hamiltonian [26–29, 37]. In contrast, classical systems exhibit no such bounds—chaos causes the exponential divergence of nearby trajectories, suggesting that errors can in principle accumulate exponentially quickly.

To sharpen this intuition, we numerically explore the Floquet dynamics of a generic classical spin model [40]:

$$
H_F(t) = \begin{cases}
\sum_{i,j} J_{ij}^x S_i^x S_j^x + \sum_i h_x S_i^x & 0 \leq t < \frac{T}{3} \\
\sum_i h_y S_i^y & \frac{T}{3} \leq t < \frac{2T}{3} \\
\sum_{i,j} J_{ij}^z S_i^z S_j^z + \sum_i h_z S_i^z & \frac{2T}{3} \leq t < T
\end{cases}
$$

(3)

where \vec{S}_i is a three-dimensional unit vector. Spin dynamics are generated by Hamilton’s equations of motion $\dot{\vec{S}}_i^\mu = \{ S_i^\mu, H(t) \}$, using the Poisson bracket relation $\{ S_i^\mu, S_j^\nu \} = \delta_{ij} \epsilon^{\mu\nu\rho} S_j^\rho$. At lowest order in the Floquet-Magnus expansion, the static Hamiltonian is given by:

$$
D = \frac{1}{3} \left(\sum_{i,j} J_{ij}^x S_i^x S_j^x + J_{ij}^z S_i^z S_j^z + h_x \cdot \vec{S}_i \right) + \mathcal{O}\left(\frac{1}{\omega}\right).
$$

(4)

To investigate the accumulation of errors, we compare the dynamics of local observables evolving under $H_F(t)$ and D in a one dimensional spin chain ($N = 10^4$) with nearest neighbor interactions [41]. Deviations from the exact Floquet dynamics are measured by computing the magnetization difference between the two trajectories: $\delta M(t) = 1 - \frac{1}{N} \sum_i \vec{S}_i(t) \cdot \vec{S}'_i(t)$. As depicted in Fig. 1(b) [top panel], $\delta M(t)$ quickly increases to a plateau value consistent with the spins in the two trajectories being completely uncorrelated; thus, D cannot be thought of as the effective prethermal Hamiltonian for $H_F(t)$. By contrast, the energy density remains conserved throughout the time evolution [bottom panel, Fig. 1(b)], demonstrating slow Floquet heating.

In order to pinpoint the role of chaos in the dynamics of $\delta M(t)$, we consider a slightly modified trajectory; in particular, starting with the same initial state, we first evolve under D for a few Floquet cycles and then under $H_F(t)$ for all subsequent times. Comparing to the exact Floquet dynamics (i.e. evolution under $H_F(t)$ for all times), this protocol only differs at very early times. Indeed, beyond an initial, exponentially-small difference in the trajectories [arising from Eqn. (2)], any additional deviation solely arises from the chaotic compounding of errors. As depicted in Fig. 1(b) [dashed curves], the magnetization difference between the modified trajectory and that of the exact Floquet dynamics, tracks $\delta M(t)$ for all times. Crucially, this agreement demonstrates that chaos dominates the growth of $\delta M(t)$ and prevents D from being the effective prethermal Hamiltonian.

Prethermal dynamics of trajectory ensembles—While the evolution of a single trajectory cannot be captured by an effective Hamiltonian, we conjecture that D captures
the dynamics of *ensembles* of trajectories [Fig. 1(a)]; by considering an initial state composed of a region of phase space (as opposed to a single point), the details of individual chaotic trajectories become “averaged out”. This conjecture is made up of two separate components: (i) during the prethermal plateau, the system must approach a thermal state of D, and (ii) D must accurately capture the dynamics of observables as the system evolves from local to global equilibrium.

To investigate these features, we implement the following numerical experiment: Starting from an $N = 100$ spin chain, we construct an ensemble of initial states with a domain wall in the energy density at the center of the chain and study the Floquet dynamics of the local magnetization S_i^z and energy density D/N [Fig. 1(c)] [42]. The presence of a domain wall in energy density enables us to distinguish between local and global equilibration.

Focusing on the late time regime (but before heating), the magnetization on opposite sides of the domain wall approaches the same prethermal plateau [Fig. 1(c)]; this precisely corresponds to the global equilibration of our spin chain (and the timescale at which the two dynamics agrees defines the global thermalization time scale τ_{global}). Crucially, the value of this plateau agrees quantitatively with the magnetization of the corresponding thermal state of D (i.e. at the same energy density) calculated via Monte Carlo [Fig. 1(c)] [22]. This verifies the first component of the conjecture.

To explore the dynamics towards global equilibration, we time evolve the same ensemble of initial states for different frequencies of the drive [43]. As long as τ_{heat} is much larger than τ_{global}, we observe that the dynamics of local observables rapidly converge as a function of increasing frequency [Fig. 1(c)]. Since the $\omega \rightarrow \infty$ limit of $H_F(t)$ precisely corresponds to Terrorized evolution under D, the observed convergence indicates that D accurately captures the dynamics of local observables in the prethermal regime. We note that this observation stands in direct contrast to the dynamics of a single trajectory, where the dynamics of S_i^z exhibit no semblance of convergence with increasing frequency [22].

A few remarks are in order. First, while the dynamics of generic observables can only be captured by the prethermal Hamiltonian when considering ensembles of trajectories, single trajectories can still provide important insights into the prethermal dynamics of particular quantities. For example, throughout the prethermal regime, a single trajectory will explore the phase space consistent with energy conservation and, at different times, it samples over the different possible states in the corresponding micro-canonical ensemble. By considering time-averaged quantities, one then recovers properties of the prethermal equilibrium state. Alternatively, by considering an initial state with homogenous energy density but small fluctuations in the spin configuration, different regions are in different (local) configurations at the same energy density and thus generate an ensemble of trajectories. As a result, the dynamics of global quantities (e.g. total magnetization $M = -N^{-1} \sum_i S_i^z$) can be immediately captured by the prethermal Hamiltonian.

Second, our analysis demonstrates that, if one is interested in the dynamics of an ensemble of trajectories, the existence of Lieb-Robinson (LR) bounds are not necessary for the existence of an effective prethermal Hamiltonian. This should be immediately applicable to quantum dynamics, where the reduced density matrix of a subsystem gives rise to a well-defined notion of local equilibrium even when considering the dynamics of a pure initial state [44–46]. As a result, even in systems with no LR bounds, the prethermal dynamics is characterized by an evolution between different locally thermal states and is, thus, well captured by the prethermal Hamiltonian.

Prethermal dynamics under symmetry breaking.—

![FIG. 2. (a) Dynamics of a classical prethermal time crystal in a one-dimensional long-range interacting system. At τ_{pre}, the local magnetization of different sites approaches the same magnetization value, highlighting global equilibration. From τ_{pre} to τ_{melt}, we observe the stable sub-harmonic response of the magnetization, characteristic of the CPDTC. At τ_{heat}, heating from the drive leads to a substantial change to the initial energy density, while at τ_{melt}, the energy density crosses the critical value ε_c and the CPDTC melts. (b,c) Prethermal dynamics of classical one-dimensional spin chains with long-range [b] and short-range [c] interactions at different frequencies ω. For long-range interactions, the system exhibits robust period doubling of the magnetization (top) until the heating time scale, which is exponentially controlled by the frequency of the drive (bottom). For short-range interactions, the system does not exhibit robust period doubling dynamics (top). As the driving frequency increases, the magnetization decays rapidly although the heating time extends exponentially (bottom).](image-url)
Throughout our previous discussions, energy conservation plays an essential role in determining the dynamical features of the system. However, phase space can have a richer structure which further affects the dynamics: for example, if D hosts a symmetry broken phase, phase space (at low enough energy density) is split into disjoint regions corresponding to different values of the order parameter. As a result, the dynamics under D are restricted to one such region. However, the evolution under the full Floquet dynamics need not respect such constraint even though D itself remains conserved. This begs the question: Can the micro-motion of the Floquet dynamics move the system between these disconnected regions of phase space? If true, symmetry breaking phases cannot be stable since the prethermal dynamics lead to the equilibration across regions with different order parameters. Fortunately, the ability of D to approximate the dynamics over a single period (even at the level of single trajectories, Eqn. 2) prevents this from occurring.

As a simple example, let us consider a system where D has a Z_2 symmetry and hosts a ferromagnetic phase (e.g. a two dimensional short-range Ising model) whose order parameter is given by the average magnetization. Starting from the symmetry broken thermal ensemble of D with non-zero magnetization S^z_{ave}, energy conservation immediately guarantees that, under one period of evolution, S^z_{ave} either evolves to S^z_{ave} or $-S^z_{\text{ave}}$. Since D itself faithfully generates the dynamics under a single period and preserves S^z_{ave} [Eqn. 2], the time evolved magnetization density (under the full Floquet evolution) can change, at most, by an exponentially small value in frequency. As a result, for sufficiently large frequencies, the magnetization cannot flip sign and the ferromagnet remains stable.

Crucially, the symmetry of D can have different origins: it can be inherited directly from $H_F(t)$, or it can emerge as a consequence of the time translation symmetry of the drive [36, 37]. In the latter case, this can give rise to intrinsically non-equilibrium phases of matter. To date, the study of such non-equilibrium prethermal phases has been restricted to quantum systems, where one can explicitly prove their stability [36, 37]. We generalize and extend this analysis to classical many-body spin systems, by taking the large-S limit of the quantum dynamics [22, 32]. Although we leave the technical details of the proof to the supplementary material [22], we will briefly highlight the main results below. Note that we will utilize the formalism of quantum dynamics below, since these results are most easily expressed in terms of unitary time evolution.

Consider a Floquet Hamiltonian $H_F(t)$ composed of a sum of two different terms: $H_X(t)$ generates a global rotation X under a period of the drive, such that the system returns to itself after M periods, i.e. $X^M = 1$; $H_0(t)$ captures the remaining interactions in the system. Crucially, at large enough frequency, the single period dynamics (in a slightly rotated frame), are accurately captured by $Xe^{-iD\tau}$, where D is obtained by modifying the conventional Magnus expansion and is guaranteed to commute with X [36, 37]. The fact that D commutes with the rotation X implies that X is a discrete Z_m symmetry of the effective Hamiltonian. Indeed, to lowest order, D is given by the time-independent terms of $H_0(t)$ that commute with X.

The analysis of the resulting prethermal dynamics is most transparent within the toggling frame of the X rotations: namely, at $t = mT$, the dynamics of any observable $\bar{O} = X^{-m}OX^m$ is accurately generated by D. If the emergent Z_m symmetry of D becomes spontaneously broken at low energy densities, the system equilibrates to thermal ensemble of D with a finite order parameter.

In the lab frame, the dynamics of O are much richer: the action of X changes the order parameter every period, only returning to the original value after M periods. As a result, the system exhibits a sub-harmonic response at frequencies $1/(MT)$ [36, 37]. This is precisely the definition of a classical prethermal discrete time crystal.

Building a CPDTC.—Let us now turn to a numerical investigation of prethermal time crystalline order in a classical spin system. One of the key advantages of exploring classical many-body dynamics, is that it will enable us to study time crystals in $d > 1$ [Fig. 3].

Consider the Floquet Hamiltonian in Eqn. 3 with an additional global π rotation around the \hat{x}-axis at end of each driving period [47]. At leading order, X corresponds to the global π rotation, while D is given by the time averaged terms of $H_F(t)$ that commute with X [i.e. Eqn. 4 with $h_\parallel = h_\perp = 0$]. As a result, D and the average magnetization S^z_{ave} can be used to diagnose the prethermal dynamics and the CPDTC phase. We first consider

![FIG. 3. Prethermal dynamics of a classical two-dimensional short-range spin system with low [a] and high [b] initial energy density. For energies densities below the critical value ε_c, the system exhibits robust period doubling until an exponentially late heating time scale in the frequency of the drive—the hallmark of the CPDTC. For energies densities above ε_c, magnetization decays rapidly and independently of the frequency of the drive.](image-url)
a one dimensional system with long-range interactions \(J_{i,j} = J_i |i−j|^{−\alpha} \) and study the dynamics of an initial low energy density ensemble \([48]\). Crucially, when \(\alpha \leq 2 \) (we take \(\alpha = 1.8 \)), \(D \) exhibits ferromagnetic order below a critical temperature (or equivalently a critical energy density \(\varepsilon_c \)) \([49, 50]\).

The resulting dynamics are summarized in Fig. 2a. After an initial transient (\(t \geq \tau_{\text{pre}} \)), the magnetization of each individual spin agrees with the average magnetization across the system and the system has equilibrated with respect to \(D \) (in the toggling frame) \([51]\). Crucially, during this prethermal regime, the magnetization exhibits robust period doubling, taking a positive value on even periods and a negative value on odd periods—this sub-harmonic response is the hallmark of the time crystalline phase. This behavior remains robust until an exponentially late time, when slow heating increases the energy density across its critical value \(\varepsilon_c \) and the CPDTC “melts”. This highlights two important features of the dynamics. First, because \(\tau_{\text{heat}} \) is much longer than the interaction timescale, the system evolves between different thermal states of \(D \) as it absorbs energy from the drive. Second, the lifetime time of the CPDTC is controlled by the heating rate and thus the frequency of the drive. Indeed, by changing the frequency of the drive, the local thermalization time remains constant while the lifetime of the CPDTC is exponentially controlled \([22]\).

Finally, let us highlight the central role of spontaneous symmetry breaking in observing a CPDTC. We do so by controlling the range of interactions, the dimensionality, and the energy density of the initial ensemble. For nearest-neighbor interactions in a 1D spin chain, ferromagnetic order is unstable at any finite temperature \([52]\), and this immediately precludes the existence of a CPDTC. This is indeed born out by the numerics [Fig. 2(c)]: We observe a fast, frequency-independent decay of the magnetization to its infinite-temperature value.

While nearest-neighbor interactions cannot stabilize ferromagnetism in 1D, they do so in any \(d > 1 \). To this end, we explore the same model on a two dimensional square lattice. For sufficiently low energy densities, the system equilibrates to a CPDTC phase [Fig. 3(a)], while above the critical temperature, the system equilibrates to a trivial phase [Fig. 3(b)]. While we have focused our discussions on prethermal time crystals with \(M = 2 \), our framework immediately generalizes to higher-\(M \) CPDTCs as well as fractional time crystalline order (see supplemental material for additional numerics) \([20, 22]\).

Our work opens the door to a number of intriguing directions. First, it would be interesting to explore the generalization of classical prethermal time crystals to quasi-periodic driving \([53]\). Second, although we have presented extensive numerical and analytic evidence for the presence of an effective Hamiltonian (for trajectory ensembles), sharpening our analysis into a proof would provide additional insights in the nature of many-body classical Floquet systems.

We gratefully acknowledge discussions with and the insights of Ehud Altman, Marin Bukov, Soonwon Choi, Wade Hodson, Christopher Jarzynski, Canxun Zhang, and Chong Zu. This work is supported in part by the DARPA DRINQS program (Grant No. D18AC00033), the A. P. Sloan foundation, the David and Lucile Packard foundation, and the W. M. Keck Foundation.

Note added: During the completion of this work, we became aware of complementary work exploring prethermal phases of matter in classical spin systems \([54]\), which will appear in the same arXiv posting.

Throughout this work, we utilize the following generic set of parameters \(\{ J_x, J_y, h_x, h_y, h_z \} = \{-1.0, 0.79, 0.17, 0.23, 0.13\} \).

In general, the chaotic nature of \(D \) means that numerically integrating the equations of motion to later times requires exponentially better precision, making the numerical treatment very difficult. By contrast, each term of \(HF(t) \) corresponds to a precession of the spins along one of three axis, which can be straightforwardly analytically calculated without resorting to numerical integration methods.

We initialize each spin along either \(+\hat{z}\) or \(-\hat{z}\) direction. By tuning the number of domain walls, we can control the local energy density of the system. While the spins on right half of the chain are initialized in a completely ferromagnetic state, the spins on the left half repeat the following pattern: \(\uparrow\downarrow\downarrow \). Therefore, the energy density across the chain exhibits a domain wall at center of the chain. To bring out the ensemble effect, we add a small randomness in the azimuthal angle and perform an average of the subsequent dynamics over these slightly different initial states.

The local equilibration time \(\tau_{\text{local}} \) corresponds to the time when nearby spins approach the same value. To identify \(\tau_{\text{local}} \), we measure the time when \(S_{1z} \) and \(S_{15} \), initial pointing in opposite directions, exhibit the same magnetization.

The \(\pi \) rotation can be generated by a magnetic field in the \(\hat{x} \) direction for time \(\tau_{\pi} \) with strength \(\pi/2\tau_{\pi} \). Since the dynamics are independent of \(\tau_{\pi} \) chosen, we consider it to be an instantaneous rotation, \(\tau_{\pi} \rightarrow 0 \).

In order to better highlight the role of \(D \) throughout the prethermal regime, we consider instead a symmetrized version of \(HF(t) \) such that its first-order contribution in inverse frequency is zero and thus the dynamics are better captured by the zero-th order terms. We note that this does not change the qualitative results, as described in the supplementary materials [22].

To prepare the initial state ensemble, we first start with the fully polarized system, flip every tenth spin, and then add a small amount of noise to the azimuthal angle. The energy density of the resulting ensemble is \(\varepsilon = -1.10 \).

By performing extensive Monte Carlo simulations, we obtain the critical energy density \(\varepsilon_c \approx -0.53 \) for the transition [22].

We note that the fluctuations of \(S_{1z} \) are local thermal fluctuations, and they decrease as we average over more realizations.
Supplementary Material:
Classical prethermal discrete time crystals

Bingtian Ye,1 Francisco Machado,1,2 and Norman Y. Yao1,2

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

PROOF FOR PRETHERMALIZATION WITH THE PRESENCE OF SYMMETRIES

In the main text, we state that with the presence of the emergent symmetry, the Floquet system still satisfies slow heating (Eqn. 1 in the main text) and the effective Hamiltonian still approximates the single trajectory exponentially well over a single driving cycle (Eqn. 2 in the main text). The mathematical derivation for these results is straightforward. In the case without the emergent symmetry, previous work treated the classical spin as large-S limit of the quantum spin model and further break each spin-S degree of freedom to multiple spin-1/2 degrees of freedom [1]. This treatment allows one to directly apply the conclusion of the quantum case to the classical system. In our generalized case with the emergent symmetry, we can utilize the same technique and follow the same path to obtain similar conclusions. Although this procedure is straightforward and does not involve more technical novelties than the case without symmetries, we still layout the key steps in the mathematical proof just to ensure the analysis and discussion in our work are complete and self-contained.

Without loss of generality, we consider the following quantum spin-S systems with one-body and two-body terms:

\[
\hat{H}_F(t) = \hat{H}_X(t) + \hat{H}_0(t)
\]

\[
g(t) \sum_i^{N} \hat{S}_i^x + \frac{1}{2S} \sum_{ij}^{N} \sum_{\mu=x,y,z} J_{ij}^{\mu} \hat{S}_i^\mu \hat{S}_j^\nu + \sum_i^{N} \vec{h}_i(t) \cdot \hat{\vec{S}}_i,
\]

where \(g(t), J_{ij}(t)\) and \(\vec{h}_i(t)\) are periodic functions of time with a period of \(T\), and the dynamics is generated by the Heisenberg equations of motion for \(\hat{S}_i^\mu\), or equivalently the Schrödinger equation for the quantum state. Here, we assume that the interaction is not extensive, i.e. \(\sum_j \sum_{\mu=\nu=x,y,z} |J_{ij}^{\mu\nu}|\) is always finite. More importantly, we assume that \(g(t)\) satisfies \(M \int_0^T g(t) dt = 2k\pi\), where \(M\) and \(k\) are two coprime integers. This means that, the system will return to exactly the same state every \(M\) driving cycles, if it evolves only under \(\hat{H}_X\). In the true quantum case when \(S\) is finite, it is proven that for sufficiently small local energy scales

\[
J_{\text{local}} := ||\hat{H}_0|| \ll \frac{1}{MT},
\]

there exist a prethermal Hamiltonian \(\hat{D}\) and a tilted symmetry operation \(X'\) such that [2, 3]

\[
[D, X'] = 0,
\]

\[
||\hat{D}(mT) - \hat{D}(0)|| < c_1 \cdot m J_{\text{local}} \cdot O(e^{-\omega/J_{\text{local}}}),
\]

\[
||\hat{O}(T) - X'^{-1}\hat{O}'(T)X'|| < c_2 \cdot ||\hat{O}| \cdot O(e^{-\omega/J_{\text{local}}}),
\]

where \(\hat{O}\) is any local observable and \(c_1, c_2\) are constants independent of frequency and \(J_{\text{local}}\). We note that \(\hat{O}'(T)\) is evolving under \(\hat{D}\), i.e. \(\hat{O}'(T) = e^{i\hat{D}T} \hat{O}'(0)e^{-i\hat{D}T}\). When the system has a polynomial Lieb-Robinson bound, the error of the operator error (last line in Eqn. 3) only grows algebraically with time, and the dynamics remain well approximated by \(\hat{D}\) for an exponentially long time in the frequency of the drive.

The classical spin systems with the same form of Hamiltonian can be treated as Eqn. 1 with \(S \to \infty\). However, the results for finite \(S\) in Eqn. 3 cannot immediately apply to the classical case, since \(J_{\text{local}} = ||\hat{H}_0|| \propto S\) diverges, and thus the condition in Eqn. 2 no longer holds. Fortunately, previous work introduced a mathematical treatment of the Hamiltonian and solved the problem associated with the divergent local energy scales [1]. We now utilize the same technique in our case with emergent symmetries. In particular, we decompose each spin \(\hat{S}_i\) into \(2S\) spin-1/2 operators \(\{\hat{s}_{i,a}\}\):

\[
\hat{S}_i = \sum_{a=1}^{2S} \hat{s}_{i,a}.
\]
With this substitution, the two parts in the Floquet Hamiltonian then become:

\[
\hat{H}_X(t) = g(t) \sum_{i,a} \hat{S}_x^{i,a} \\
\hat{H}_0(t) = \frac{1}{2S} \sum_{i,a,j,b} \sum_{\mu,\nu = x,y,z} J_{\mu\nu}^{ij} \hat{S}_\mu^{i,a} \hat{S}_\nu^{j,b} + \sum_i \hat{h}_i(t) \cdot \hat{\mathbf{s}}_{i,a}.
\] (5)

From the perspective of the spin-1/2, \(\hat{H}_X \) still preserves its property: it makes every individual spin return to the same state every \(M \) driving cycles. Meanwhile, the local energy scale of \(\hat{H}_0 \) becomes finite:

\[
\frac{1}{2S} \sum_j \sum_{\mu,\nu} |J_{\mu\nu}^{ij}| \cdot ||\hat{S}_\mu^{i,a}|| \cdot ||\hat{S}_\nu^{j,b}|| + \sum_\mu |h_\mu^i(t)| \cdot ||\hat{S}_\mu^{i,a}|| \\
\leq \frac{1}{4} \sum_j \sum_{\mu,\nu} |J_{\mu\nu}^{ij}| + \frac{1}{2} \sum_\mu |h_\mu^i(t)|.
\] (6)

Therefore, one can then safely apply the conclusions of the true quantum case to such effective spin-1/2 system, immediately proves Eqn. 1 and Eqn. 2 of the main text. That is to say, when \(S \to \infty \), the energy is still conserved for exponentially long, and the local dynamics is approximated by \(X' e^{-i\hat{D}T} \) exponentially well over one Floquet cycle. These results are the generalization of the classical prethermal dynamics to the situation with emergent symmetry \(X' \), and serve as the underlying principles for the CPDTC studied in the manuscript.

Here, we remark that by splitting the large-\(S \) spins into \(2S \) spin-1/2 degrees of freedom, one reduces the local energy scale of each spin degrees at the expense of increasing the system dimension by 1 and introducing long-range interactions along the virtual dimension. Although this long-range interaction does not lead to the divergence of the local energy scale, it precludes the existence of a LR bounds, and further prohibit \(\hat{D} \) to reproduce the dynamics over multiple Floquet cycles.

NUMERICAL COMPARISON BETWEEN FLOQUET DYNAMICS AND THE EFFECTIVE DESCRIPTION

In the main text, we numerically studied and compared the dynamics under the true Floquet evolution and the effective Hamiltonian. At short times, we consider the single state evolution under the two Hamiltonians, while at long times, we compare the Floquet prethermal state to the corresponding thermal state of the effective Hamiltonian. Since a discussion of the numerical simulation of the true Floquet dynamics \(H_F \) is already present in the main text, in this section we provide additional details on the numerics associated with the effective Hamiltonian \(D \).

Benchmark the dynamics under the effective Hamiltonian

At short times \(\sim 10^2/J \), we simulate the dynamics under \(D \) by numerically solve the equations of motion \(\dot{S}_\mu^i = \{ S_\mu^i, D \} \). Since \(D \) always involves the terms along all three axis, one cannot utilize the techniques for the Floquet evolution that enable the investigation to very late times without worrying about accumulation of error [4]. Instead, we solve the non-linear problem using a fourth-order Runge–Kutta method, where the precision of the simulation is controlled by the step length. As shown in Fig. 1, we confirm that, within the timescale \(\sim 150/J \) we simulated, a time step of \(1/1000J \) guarantees that the numerical error is less than 1%.

Monte Carlo results for the equilibrium states

In the main text, we reach two important conclusions regarding the equilibration of the prethermal dynamics. First, we show that, during the prethermal regime, the system approaches the thermal state of the effective Hamiltonian. Second, we demonstrate that the decay of the CPDTC order occurs when the temperature of the system crosses the symmetry breaking phase transition of the underlying effective Hamiltonian \(D \). To reach these two conclusions, we must compute the equilibrium states with respect to the static effective Hamiltonian, which we achieve by simply performing a classical Monte Carlo simulation. In this section, we provide some relevant details and data.
Time(1)
Error
FIG. 1. Numerical errors as a function time. To estimate the error, we evolve the system with two different step lengths (1/500J and 1/1000J) in the fourth-order Runge-Kutta method, and compute the difference between the two resulting dynamics. The error is defined as their magnetization difference.

In a Monte Carlo simulation, by tuning the jumping probability in the Metropolis process, one essentially controls the detailed balance and thus the temperature of the obtained ensemble of states. For each run of our Monte Carlo simulation, we first perform 10000 steps from a completely random state in the Metropolis process, and then build up an ensemble of states in another 30000 steps; for each data point, we performed the simulation with 8 different random initial states, and computed the average and the uncertainty.

To compare the prethermal Floquet plateau with the thermal ensemble of D, we computed the magnetization S^z at a function of the energy density D/L (Fig. 2). Crucially, we also plot the Floquet prethermal state in Fig. 2, and observe great agreement with the thermal ensemble value.

FIG. 2. The magnetization S^z as a function of the energy density D/N. To calculate S^z and D/N of a thermal ensemble with respect to D, we perform classical Monte Carlo simulations at different temperatures. The prethermal plateau values are obtained by directly compute the observables of the fast-driving Floquet system in the prethermal regime. Crucially, the prethermal plateau precisely agrees with the thermal ensemble of D.

To confirm that CPDTC melts when its temperature [energy density] matches the critical point of the symmetry breaking phase transition of D, we studied the ferromagnetic order parameter $(S^z)^2$ as a function of temperature. By performing the finite size analysis, we obtain the critical temperature, and further find out the corresponding critical energy (Fig. 3).

DYNAMICS OF LOCAL OBSERVABLES IN DIFFERENT MODELS

In the main text, we studied the dynamics of local magnetization in the low-temperature long-range interacting model. Such dynamics provides information about when the system reaches the prethermal equilibrium, which is necessary for the discussion of CPDTC, because only after the equilibration the prethermal phase is well-defined. Moreover, we demonstrated that the local magnetization agrees with the global magnetization afterwards, indicating
FIG. 3. The ferromagnetic order parameter \((S^z)^2\) and the energy density \(D/N\) as a function of the temperature, calculated by Monte Carlo simulation. As the system size \(N\) increases, the transition of the order parameter from zero to non-zero becomes sharper. We identify the critical temperature as the crossing point of the curves with different system sizes. The energy density as a function of temperature then allows us to obtain the critical energy density \(\varepsilon_c\), which we use to compare against the melting point of the CPDTC.

that the subharmonic oscillation can be diagnosed by local quantities without performing an spatial average across the entire system. In this section, we show the local dynamics of other models studied in the main text, including the 1D long-range interacting 1D spin chain at high temperature, short-range interacting 1D spin chain, and short-range interacting 2D spin model at both low and high temperatures.

Among all these cases, the short-range interacting 2D model at low temperature hosts time-crystalline order, as illustrated in the main text. Indeed, its local dynamics exhibit qualitatively the same behaviors as the low-temperature long-range interacting 1D spin chain. In Fig. 4, starting from an initial ensemble with low energy density, the local magnetization on different sites first follow different time traces, but eventually approach the same value, which equals the globally averaged magnetization and corresponds to the prethermal equilibrium. Then the local magnetization exhibits a robust oscillation with a period of two driving cycles. In contrast, the other models we presented cannot host time-crystalline phases, due to the lack of symmetry breaking of the underlying emergent symmetry. Accordingly, we observe similar pattern in the local equilibration process, but then the local magnetization approaches zero (Fig. 4). This shows that there is no non-trivial prethermal phase: not only the globally averaged quantities but also the local quantities trivially remains constant throughout the prethermal equilibrium regime.

PRETHERMAL TIME CRYSTALS WITH DIFFERENT PERIODS

In the main text, we show CPDTC with a period of \(2T\) in both one and two dimensions. Actually, our framework simply suggests that by tuning the symmetry operator \(X\), one can obtain \(D\) with different emergent symmetries, and can further realize CPDTC with different periods. Here in this section, we provide two such examples: 1) a 3-DTC with a period of \(3T\) and 2) a fractional DTC with a period of \(\frac{5}{2}T\).

In particular, we still focus on the 1D long-range interacting spin chains, which allows a spontaneously broken symmetry phase at low temperatures. However, if the effective Hamiltonian only includes two-body interactions, then any \(\mathbb{Z}_n\) symmetry with \(n > 2\) will actually imply that the system has a \(U(1)\) symmetry. Therefore, in order to introduce a \(\mathbb{Z}_n\) symmetry while avoiding a \(U(1)\) symmetry, we add a nearest-neighbor three-body term \((J_{zz}S_{i-1}^z S_i^z S_{i+1}^z)\) in the Hamiltonian, and keep other two-body terms the same as Eqn. 4 in the main text. Another important modification to the Floquet Hamiltonian is that instead of having a \(\pi\)-rotation around x-axis, we evolve the system with a \(2\pi n\)-rotation at the end of each driving period. To be more specific, the Floquet Hamiltonian is written as:

\[
H_F(t) = \begin{cases}
\sum_{i,j} \frac{J_{zz}}{2} S_i^z S_j^z + \sum_i J_{zz} S_{i-1}^z S_i^z S_{i+1}^z + \sum_i h_z S_i^z & 0 \leq t < \frac{T}{3} \\
\sum_i J_y S_i^y S_{i+1}^y + \sum_i h_y S_i^y & \frac{T}{3} \leq t < \frac{2T}{3} \\
\sum_i J_{xx} S_i^x S_{i+1}^x + \sum_i h_x S_i^x & \frac{2T}{3} \leq t < T \\
g \sum_i S_i^x & T \leq t < T + T'
\end{cases}
\]

where \(gT' = \frac{2\pi}{n}\).
FIG. 4. Magnetization dynamics [(a)(c)(e)] and energy [(b)(d)(f)] evolution of various Floquet spin systems: (a)(b) short-range interacting spins on a 2D square lattice at low temperature; (c)(d) short-range interacting spins on a 1D chain; (e)(f) short-range interacting spins on a 2D square lattice at high temperature. In all cases, the local magnetization approaches the global average after equilibration with respect to the effective Hamiltonian. However, only the low-temperature 2D system exhibit a subharmonic oscillation in both the global and local magnetization until exponentially late heating time scales.

Following exactly the same recipe for the 2-DTC, we now choose $n = 3$ and thus the effective Hamiltonian will have an emergent \mathbb{Z}_3 symmetry. Initializing the system with a low-energy state (with respect to the effective Hamiltonian), we observe a local equilibration process followed by a subharmonic response with a period of $3T$, which can be diagnosed by both the magnetization (Fig. 5a).

When n is chosen to be a fraction, the dynamics are slightly different from the integer case. Previous work studied similar situations in a nearly all-to-all interacting system, and observed signatures of robust subharmonic response at fractional frequencies [5]. Here, we put the entire discussion in our framework of CPDTC, where the system is truly many-body interacting. In particular, by choosing $n = 5/2$, the effective Hamiltonian then satisfies a \mathbb{Z}_5 symmetry. However, every 5 driving cycles, the symmetry operation X effectively leads to a 4π-rotation around the x-axis. Crucially, this results in a fractional time transnational symmetry breaking with a new period of $5T/2$ (Fig. 5b). This is in contrast with the case when $n = 5$: while in both cases, the energy shell of the effective Hamiltonian breaks into 5 unconnected pieces, the symmetry operation brings the system between pieces in different orders. Here, we remark that different responding frequencies in the Fourier analysis between the two cases results from that the magnetization is treated as a continuous variable. However, in Floquet dynamics, one usually only focus on stroboscopic dynamics, so the fractional case ($n = 5/2$) is essentially not different from the integer case ($n = 5$), and does not involve more underlying physics.

FIG. 5. Dynamics of higher-order CPDTC in a long-range interacting spin chain. Lower panels: the magnetization exhibits an oscillation with a period of $3T$ [(a)] or $5T$ [(b)] in the prethermal regime (shaded regions) until the exponentially late Floquet heating times. Upper panels: zoom-in of magnetization over a few driving cycles in the prethermal regime. The parameters chosen in the simulations are $\{\alpha, J_z, J_{zz}, J_{xz}, J_{yz}, h_x, h_y, h_z, gT, \omega\} = \{1.5, -0.383, 0.53, 0.28, 0.225, 0.13, 0.09, 0.06, 2\pi/3, 4.0\}$ and $\{\alpha, J_z, J_{zz}, J_{xz}, J_{yz}, h_x, h_y, h_z, gT, \omega\} = \{1.5, -0.383, 0.58, 0.13, 0.225, 0.03, 0.03, 0.06, 4\pi/5, 8.0\}$ for the 3-DTC and the $\frac{5}{2}$-DTC, respectively.