Emergence of Scaling in Complex Substitutive Systems

Ching Jin1,2,3*, Chaoming Song4*, Johannes Bjelland5, Geoffrey Canright5 & Dashun Wang1,2†

1Northwestern Institute on Complex Systems (NICO), 600 Foster Street, Evanston, IL 60208, USA
2Kellogg School of Management, 2211 Campus Drive, Evanston, IL 60208, USA
3Center for Complex Network Research, Northeastern University, Boston, MA 02115, USA
4Department of Physics, University of Miami, 1320 S Dixie Hwy, Coral Gables, FL 33146, USA
5Telenor Research and Development, Snarøyveien 30 N-1360 Fornebu, Norway

*These authors contributed equally to this work.

†Correspondence should be addressed to D.W. (dashun.wang@kellogg.northwestern.edu)
Abstract. Diffusion processes are central to human interactions. One common prediction of the current modeling frameworks is that initial spreading dynamics follow exponential growth. Here, we find that, ranging from mobile handsets to automobiles, from smart-phone apps to scientific fields, early growth patterns follow a power law with non-integer exponents. We test the hypothesis that mechanisms specific to substitution dynamics may play a role, by analyzing a unique data tracing 3.6M individuals substituting for different mobile handsets. We uncover three generic ingredients governing substitutions, allowing us to develop a minimal substitution model, which not only explains the power-law growth, but also collapses diverse growth trajectories of individual constituents into a single curve. These results offer a mechanistic understanding of power-law early growth patterns emerging from various domains and demonstrate that substitution dynamics are governed by robust self-organizing principles that go beyond the particulars of individual systems.
Diffusion processes impact broad aspects of human society\cite{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}, ranging from the spread of biological viruses\cite{3,6,7,8} to the adoption of innovations\cite{4,9,10,11,12,13,14,15,16,17,18} and knowledge\cite{15,16} and to the spread of information\cite{17,18,19}, cultural norms and social behavior\cite{20,21,22,23}. Despite numerous studies that span multiple disciplines, our knowledge is mainly limited to spreading processes in non-substitutive systems. Yet, a considerable number of ideas, products and behaviors spread by substitution—to adopt a new one, agents often need to give up an existing one. For example, the development of science hinges on scientists’ relentlessness in abandoning a scientific framework once one that offers a better description of reality emerges\cite{24}. The same is true for adopting a new healthy habit or other durable items, like mobile phones, cars or homes.

While substitutions play a key role from science to economy, our limited understanding of such processes stems from the lack of empirical data tracing their characteristics. To study the dynamics of substitutions, we explore growth patterns in four different substitutive systems where detailed dynamical patterns are captured with fine temporal resolution (See Supplementary Note 1 for detailed data descriptions). Our first dataset captures, with daily resolution, 3.6 Million individuals choosing among different types of mobile handsets, recorded by a Northern European telecommunication company from January 2006 to November 2014. Since an individual is unlikely to keep more than one mobile phone at a time, his or her adoption of a new handset is typically associated with discontinuance of the old one. Here, we focus on handsets that have been released for at least 6 months and used by at least 50 users in total (885 different handset models). Our second dataset captures monthly transaction records of 126 automobiles sold in the North America between 2010 and 2016. These automobiles have been released for at least four months before the
data was collected. Automobiles represent a similar example as mobile handsets, where adoptions are largely driven by substitutions, given the limited number of automobiles a typical household may have.

While handset and automobile adoptions are relatively exclusive, in reality, there are also “hybrid” substitutive systems, where the definition of substitutions is less strict. To test if results presented in this paper may apply to such systems, we collected two additional datasets: One traces the number of daily downloads for new smartphone apps published in the App store (2,672 most popular apps in the iOS systems from November to December 2016), and the other one is a scientific publication dataset, recording 246,630 scientists substituting for 6,399 scientific fields from 1980 to 2018. Indeed, usages of smart-phone apps are subject to constraints of time and device space, hence a new app downloaded reduces the usage of other similar apps, if not replacing them all together. Yet, at the same time, apps may also be downloaded without involving substitutions. Similarly, while many scientists may focus on one research area at a time, where research direction shifts may be characterized by substitutions, there are also people who explore several directions simultaneously hence an increased focus on one direction does not necessarily imply a decreased attention to others.

Results.

A common prediction by current modeling frameworks, from epidemiological models to disordered systems to diffusion of innovations, is that early growth patterns follow an exponential function. To test this prediction, we measure in our four datasets the impact of each mobile
handset, automobile model, smartphone app, and scientific field. More specifically, we calculated $I(t)$, measuring the number of individuals who bought the handset up to time t since its availability (Fig. 1A), cumulative sales of an automobile (Fig. 1B), daily downloads of an App (Fig. 1C), and the number of publishing scientists in a field (Fig. 1D), respectively. To compare across different constituents, we normalized $I(t)$ by its initial value $I(1)$ (i.e. the first day or year when the constituent was introduced), and first focused on their early growth periods only (Supplementary Note 1).

We find that, in contrast to the exponential curves predicted by canonical models, for many of the constituents across the four systems, their growth trajectories appear to follow straight lines on a log-log plot (Fig. 1A–D), suggesting that they may be described by power law functions. This observation prompts us to systematically test whether power law or exponential-class functions (exponential or logistic) are preferred to describe early growth curves observed in our four systems. Using the Akaike information criterion (AIC), we find that 98.6% handsets, 83.5% automobiles, 79.6% apps and 74.1% scientific fields favor power-law early growth patterns (Supplementary Note 1 and Supplementary Figure 12). We further tested the robustness of this result by applying different statistical tests (Supplementary Note 1), and by varying the definition of early growth periods in each dataset (Supplementary Figure 14), and for both cases, we arrived at the same conclusion.

Note that, although for vast majority of the curves (80.18%–99.21%), power law offers a better fit than exponential-class models (see Supplementary Note 1, Supplementary Figure 4, 12...
and 14), there is variability in how well a power law function fits different curves. Moreover, there is a small fraction (0.79%–19.82%) of constituents whose early growth patterns can be described by exponential functions, suggesting that for these constituents their growth patterns are consistent with the predictions of existing models. To ensure our fitting procedure is not biased against exponential functions, we analyzed spreading patterns of 168 cases of flu pandemics in the United States, where early growth patterns are expected to follow exponential function. We find the fitting results indeed systematically prefer exponential to power law (Supplementary Note 1 and Supplementary Figure 15). Together, Fig. 1A-D suggest the existence of a non-trivial fraction (74.1%–98.6%) of constituents, whose early growth patterns follow a power law rather than an exponential function.

To examine if there are indeed a fraction of growth trajectories that can be well described by power law growth patterns, we further restrict the criteria for classifying power laws by selecting on those with a high R^2 in fitting (e.g. $R^2 > 0.99$). We find that, under the stricter criteria, a substantial fraction of constituents remained in each of the four systems (27.12% handsets, 29.37% automobiles, 38.25% Apps, and 27.24% fields) (Fig. 1E–H). The results indicate that for a substantial fraction of constituents across the four substitutive systems we studied, their impacts grow following

$$I(t)/I(1) = t^\alpha.$$ \hspace{1cm} (1)

We also noticed that within each system, the slopes of power-law curves shown in Fig. 1E–H differ across different constituents, suggesting that each of them is characterized by constituent-
specific exponents (η_i). To test this hypothesis, we plot each curve in Fig. 1E–H in terms of t^n. As constituents differ from each other, the rescaled curves show variations around the function $y = x$. Yet we find that most curves are reasonably collapsed onto the same function (Fig. 1I–L). The rescaled growth patterns for all products across our four datasets are also shown in Supplementary Figure 6. We find that, although as expected, their growth patterns show more variations around $y = x$, they are clearly different from exponential growth patterns.

The observations documented in Fig. 1A–L are somewhat unexpected for two main reasons. First, the four systems we studied differ widely in their scope, scale, temporal resolution, and user demographics. Yet, we find, independent of the nature of the system and the identity of the constituents, their early growth follows similar patterns, showing that a power law scaling emerges across all four systems. Second, exponents η_i are mostly non-integers (Fig. 1M–P). Power law growth with such non-integer exponents is rare because it corresponds to non-analytic behavior. Indeed, due to the inability to express them in terms of taylor series around $t = 0$, power laws with non-integer exponents indicate singular behavior around the release time (the $[\eta]$-th order derivative diverges at $t = 0$). Current modeling frameworks rely on functions without singularities, hence are unable to anticipate non-analytic solutions (Detailed descriptions and comparisons to existing models are described in Supplementary Note 1 and 3). Indeed, comparing with exponential growth, power law encodes an early divergence, corresponding to an explosive growth at the moment when new constituents are introduced. Yet following this brief singularity, the number of users grows much more slowly than what exponential functions predict, suggesting that substitutive innovations spread more slowly beyond the initial excitement.
Keep in mind, however, that not all curves follow power law growth patterns, and a few of them can indeed be described by exponential functions, suggesting that substitutions and traditional adoptions may coexist in our systems. Nevertheless, these results document the existence of power law early growth curves in the substitutive systems we studied, a pattern that is not anticipated by traditional modeling frameworks, and suggests that substitutive systems may be governed by different dynamics.

To be sure, power laws can be generated in real networks due to the growth of the systems. To check if Fig. 1 may be explained by gradual addition of new users to the underlying network, we removed new mobile subscribers in the mobile-phone dataset and measured again $I(t)$ for different handsets. We find that the power law scaling holds the same (Supplementary Note 3, Supplementary Figure 19), indicating that the scaling observed in Fig. 1 is governed by mechanisms that operate within the system, not driven by growth of the system. Another possible origin of power law growth is rooted in the bursty nature of human behavior, where the inter-event time between adoptions follows a power law distribution. We measured this quantity directly in the mobile-phone dataset, finding the data systematically reject power law as a viable function to describe the inter-event time distribution ($p < 10^{-3}$, Supplementary Figure 20). It is also worth noting that, sub-exponential growth patterns have recently been found in the spread of epidemics such as Ebola and HIV. There are also phenomenological models of spreading dynamics that take power law early growth as their assumptions, in addition to a large body of literature on modeling popularity dynamics. While a mechanistic explanation is still lacking, these examples demonstrate that the power-law early growth patterns uncovered here may hold relevance to a
broad array of areas. Together, these results raise a fundamental question: what is the origin of the power law growth pattern?

Quantifying substitution patterns. A common characteristic of the four studied systems is that they evolve by substitutions. In this respect, mobile phones represent an ideal setting for the empirical investigation of substitutive processes. Indeed, each time a user purchases a handset, the transaction history is recorded by telecommunication companies. Anonymized phone numbers together with their portability across devices provide individual traces for substitutions. We examined detailed user histories in the mobile-phone dataset, finding that the adoption and discontinuance histories are indeed predominantly represented by substitutions (Supplementary Note 2). Each type of handset is substituted by a large number of other handsets, hence substitution patterns are characterized by a dense, heterogeneous network that evolves rapidly over time ($\langle k \rangle \approx 73.6$, Supplementary Figure 17BC and 18). To visualize substitution patterns, we applied a backbone extraction method42 to identify statistically significant substitution flows for each handset given its total substitution volumes (Fig. 2). While mobile handsets have changed substantially over the years, undergoing a ubiquitous shift from feature phones to smart phones, the rate at which new handsets enter the market remained remarkably stable (Fig. 3A), highlighting the highly competitive nature of the system: Ensuing generations of new handsets enter the market in a somewhat regular manner, substituting for the incumbent, thereby affecting the rise and fall of their popularities (Supplementary Figure 18A).

To uncover the mechanisms governing substitution dynamics, we note that the rate of change
in $N_i(t)$, the number of users for handset i at time t, can be expressed in terms of the probability for individuals to transition from all other handsets (k) to i, $\Pi_{k\rightarrow i}$, subtracted by those leaving i for other handsets (j), $\Pi_{i\rightarrow j}$:

$$\frac{dN_i(t)}{dt} = \sum_k \Pi_{k\rightarrow i}(t)N_k(t) - \sum_j \Pi_{i\rightarrow j}(t)N_i(t).$$

(2)

The key to solving the master equation (2) is to determine $\Pi_{i\rightarrow j}$, the substitution probability for a user to substitute handset i for j at time t. As we show next, $\Pi_{i\rightarrow j}$ is driven by three mechanisms: preferential attachment, recency and propensity.

Figure 3B shows that $\Pi_{i\rightarrow j}$ is independent of the number of individuals using i (N_i), but proportional to N_j: $\Pi_{i\rightarrow j} \sim N_j$. This result captures the well-known preferential attachment effect15,26. More popular handsets are more likely to attract new users than their less popular counterparts, consistent with existing models that can be used to characterize substitutions43,44. Yet N_j by itself is insufficient to explain $\Pi_{i\rightarrow j}$. Indeed, we further normalized $\Pi_{i\rightarrow j}$ by N_j, by defining $S_{i\rightarrow j} \equiv \Pi_{i\rightarrow j}/N_j$, the substitution rate at which handset j substitutes for i. We find that $p(S_{i\rightarrow j})$ follows a fat-tailed distribution spanning several orders of magnitude (Fig. 3C), indicating that substitution rates are characterized by a high degree of heterogeneity, where $S_{i\rightarrow j}$ between some handset pairs are orders of magnitude higher than others.

To identify mechanisms responsible for the observed heterogeneity in $S_{i\rightarrow j}$, we grouped $S_{i\rightarrow j}$ based on the age of the substitutes t_j, the number of days elapsed since its release date, and measure the conditional probability $p(S_{i\rightarrow j}|t_j)$ for each group. We find that as substitutes grow older (increasing t_j), $p(S_{i\rightarrow j}|t_j)$ shifts systematically to the left (Fig. 3D), indicating substitution
rates decrease with the age of substitutes—newer handsets substitute for the incumbents at a higher rate. Yet, within each group, the heterogeneity of \(S_{i \rightarrow j} \) persisted, as \(p(S_{i \rightarrow j}|t_j) \) again follows a fat-tailed distribution. Once we rescale the distributions \(p(S_{i \rightarrow j}|t_j) \) with \(t_j \), however, we find that all seven distributions in Fig. 3D collapse into one single curve (Fig. 3E). To quantify the relationship between \(S_{i \rightarrow j} \) and \(t_j \), we take an ansatz: \(S_{i \rightarrow j} \sim t_j^{-\theta} \), and rescale \(S_{i \rightarrow j} \) by \(t_j^{-\theta} \). As we vary \(\theta \), we monitor the diversity of the curves, finding that it reaches its minimum around \(\theta = 1 \) (Fig. 3E, inset), indicating \(S_{i \rightarrow j} \) is inversely proportional to \(t_j \). The data collapse in Fig. 3E demonstrates that a single distribution characterizes substitution rates, independent of the age of substitutes:

\[
p(S_{i \rightarrow j}|t_j) \sim t_j F(S_{i \rightarrow j} t_j).
\]

In other words, substitution rates \(S_{i \rightarrow j} \) can be decomposed into two independent factors: one is the universal function \(F(x) \), which is independent of the substitute’s age, capturing an inherent propensity-based heterogeneity among handsets. Denoting the propensity by \(\lambda_{ij} \equiv S_{i \rightarrow j} t_j \), (3) indicates \(S_{i \rightarrow j} \sim \lambda_{ij} \frac{1}{t_j} \). We repeated our analysis for \(t_i \), i.e., the age of incumbent handset \(i \) when substituted, finding that all curves of \(p(S_{i \rightarrow j}|t_i) \) automatically collapsed onto each other (Fig. 3F). Hence, when incumbents are substituted, whether they were released merely a few months ago (small \(t_i \)) or have existed in the market for years (large \(t_i \)), their substitution rates follow the same distribution, documenting an independence between substitution rates and the age of the incumbents. Mathematically, Fig. 3F indicates \(p(S_{i \rightarrow j}|t_i) = p(S_{i \rightarrow j}) \).

Together, Figs. 3D–F help us uncover two more mechanisms governing substitutions, recency and propensity: substitution rates depend on the recency of substitutes, following a power law \(1/t_j \). The uncovered power law decay has a simple origin, documenting the role of competi-
tions in driving the obsolescence of handsets. Indeed, when \(j \) first entered the system, being the latest handset (small \(t_j \)), it substitutes for the incumbent at its highest rate. Yet with time, more and more newer handsets are introduced. The constant rate of new arrivals (Fig. 3A) implies that the number of alternatives to \(j \) grows linearly with \(t_j \). Hence if we pick one handset randomly, the probability for handset \(j \) to stand out among its competitors decays as \(1/t_j \). The temporal decay is further modulated by the inherent propensity \(\lambda_{ij} \) between two handsets, capturing the extent to which a certain handset is more likely to substitute for some handsets than others. Taken together, Figs. 3B–F predict

\[
\Pi_{i \rightarrow j} = \lambda_{ij} N_j \frac{1}{t_j}. \tag{4}
\]

Minimal Substitution Model. Most importantly, (4) defines a Minimal Substitution (MS) model, which, as we show next, naturally leads to the observed power law early growth patterns. In this model, the system consists of a fixed number of individuals, with new handsets being introduced constantly (Fig. 3A). In each time step, an individual substitutes his or her current handset \(i \) for new handset \(j \) with probability \(\Pi_{i \rightarrow j} \), according to (4). The propensity \(\lambda_{ij} \) between handset \(i \) and \(j \) is drawn randomly from a fixed distribution. Our results are independent of specific distributions \(\lambda_{ij} \) follows. We can solve our model analytically in its stationary state (Fig. 3A) by plugging (4) into (2), yielding (Supplementary Note 4):

\[
N_i(t_i) = h_i t_i^{\eta_i} e^{-t_i/\tau_i}, \tag{5}
\]

indicating that the number of individuals using handset \(i \) is governed by three parameters: \(\eta_i \), \(h_i \) and \(\tau_i \). \(\eta_i \equiv \sum_k \lambda_{k \rightarrow i} N_k \) captures the *fitness* of a handset, measuring the total propensity
for users to switch from all other handsets to \(i \). The *anticipation* parameter \(h \) arises from the boundary condition at \(t_i = 0 \) when solving the differential equation (2), approximating the number of individuals using handset \(i \) when \(t_i = 1 \), which captures users’ initial excitement for a particular handset. \(\tau_i \) is the *longevity* parameter, as it captures the characteristic time scale for \(i \) to become obsolete. Indeed, defining \(t^*_i \) as the time when a handset reaches its maximum number of users, equation (5) predicts that the peak time \(t^*_i \) is proportional to its longevity parameter and fitness: \(t^*_i = \eta_i \tau_i \).

The impact of handset \(i \), i.e., its cumulative sales, can be calculated by integrating all transition flows from other handsets to \(i \) before \(t_i \): \(I_i(t_i) = \int_0^{t_i} \sum_k \Pi_{k \to i} N_k dt \), yielding:

\[
I_i(t_i) = h_i \eta_i \tau_i^{\eta_i} \gamma_{\eta_i}(t_i/\tau_i),
\]

where \(\gamma_{\eta}(t) \equiv \int_0^t x^{\eta-1} e^{-x} dx \) is the lower incomplete gamma function. Hence, in the early stage of a lifecycle (small \(t_i \)), (6) predicts that the impact of handset \(i \) grows following a power law:

\[
I_i(t_i) = h_i t_i^{\eta_i},
\]

where the growth exponent is uniquely determined by the fitness parameter \(\eta_i \), equivalent to the power law exponent discovered in (1). Equation (7) indicates that the specific power law exponent for each constituent is governed by its propensity to substitute for the incumbents in the system. The higher the fitness, the steeper is the power law slope, hence the faster is the take-off in the number of users. The power law growth is further modulated by the anticipation parameter \(h \), capturing the impact difference during the initial release. Note that it may take some time for model parameters to reach their stationary state, which may affect the validity of (5) and (7). To this end,
we performed agent-based simulations of the model, finding that the parameters reach stationary states faster than the empirical time scale we measure (Supplementary Note 4, Supplementary Note 21).

Universal impact dynamics. The MS model not only explains the early growth phase; it also predicts the entire lifecycle of impacts (Supplementary Note 4). By using the rescaled variables: \(\tilde{t}_i = t_i / \tau_i \) and \(\tilde{I}_i = I_i / (h_i \eta_i \tau_i^\eta_i) \), we obtain:

\[
\tilde{I}_i = \gamma_{\tilde{t}_i}(\tilde{t}_i).
\]

Therefore, for handsets with the same fitness, their impact dynamics can be collapsed into a single function after being rescaled by the three independent parameters (\(\eta, \tau \) and \(h \)). Most interestingly, since the rescaling formula (8) is independent of the particulars of a system, it predicts that, constituents from different systems should all follow the same curve as long as they have the same fitness.

To test these predictions, we fit our model (6) to all four systems using maximum-likelihood estimation (Supplementary Note 4) to obtain the best-fitted three parameters (\(\eta_i, h_i, \tau_i \)) for each handset, automobile, smart-phone app and scientific field. We first selected from the four systems, those with similar fitness (\(\eta \approx 1.5 \)). Although their impact dynamics appear different from each other (Fig. 4A–D), we find all curves simultaneously collapsed into one single curve after rescaling (Fig. 4E–H). To test for variable fitness, we selected two additional groups of handsets (\(\eta \approx 1.8 \) and \(\eta \approx 2.0 \)), finding that the rescaled impact dynamic in both groups can be well approximated by their respective universality classes predicted by (8) (Fig. 4I–J). The universal curves correspond
to the associated classes of the incomplete gamma functions $\gamma_{\eta_i}(\tilde{t}_i)$, which only depend on the fitness parameter η (Fig. 4K). The model also predicts that if we properly normalize out the effect by $\gamma_{\eta_i}(\tilde{t}_i)$, we can rescale the entire lifecycle to a power law solely governed by η. Indeed, (6) indicates that, by defining $Q(t) \equiv [I(t)/h - \tau^\eta \gamma_{\eta+1}(t/\tau)] e^{t/\tau}$, Q should grow following a power law, $Q(t) = t^\eta$ (Supplementary Note 4). We find agreement across the four systems we studied (Figs. 4L–O). Together Figs. 4A–O document regularities governing impact dynamics, which appear to hold both within a system and across different complex substitutive systems. Given the diversity of the studied systems and the numerous factors that determine the dynamics of spreading processes, ranging from initial seeds and timing45,46 to social influence13,22 to a large set of often unobservable factors47, this level of agreement is somewhat unexpected.

Linking short-term and long-term impacts. The MS model predicts an underlying connection between short and long-term impact. Indeed, we can calculate the ultimate impact—the total number of a particular handset, automobile, smart-phone app or scientific field, ever sold, downloaded or studied in its lifetime—by taking the $t \to \infty$ limit in (6), obtaining:

$$I_i^\infty = h_i \Gamma(\eta_i + 1) \tau_i^{\eta_i},$$

(9)

where $\Gamma(z) \equiv \int_0^\infty x^{z-1} e^{-x} dx$ corresponds to the gamma function. Comparing (6) and (9) reveals that ultimate impact and the impact at the peak number of users follow a simple scaling relationship

$$\frac{I_i^\infty}{I_i(t_i^*)} = \Phi(\eta_i),$$

(10)

where $\Phi(\eta) \equiv \frac{\Gamma(\eta)}{\gamma_{\eta}(\eta)}$. That is, I_i^∞ scales linearly with peak impact $I_i(t_i^*)$, and their ratio is determined only by the initial power law exponent η_i. To validate (10) we find I_i^∞ and $I_i(t_i^*)$ follow
a clear linear relationship in our dataset for different values of η (Fig. 4P). In addition, Fig. 4P shows the relationship posts a slight shift as η increases. The rather subtle shift is also consistent with (10), as $\Phi(\eta)$ increases slowly with η (Fig. 4Q). Therefore, the uncovered power law growth patterns potentially offer a link between short-term and long-term impact in substitutive systems.

Discussion. In summary, here we analyzed a diverse set of large-scale data pertaining to substitutive processes, finding that early growth patterns in substitutive systems do not follow the exponential growth customary in spreading phenomena. Instead, they tend to follow power laws with non-integer exponents, indicating that they start with an initial explosive adoption process, followed by a much slower growth than expected in normal diffusion. Analyzing patterns of 3.6M individuals substituting for different mobile handsets, we uncovered three elements governing substitutions. Incorporating these elements allowed us to develop a minimal model for substitutions, which predicts analytically the power law growth patterns observed in real systems, and collapses growth trajectories of constituents from rather diverse systems into universal curves.

Together, the results reported in this paper unpack the origin of robust self-organization principles emerging in complex substitutive systems, and demonstrate a high degree of convergence across the systems we examined. Given the ubiquitous role substitutions play in a wide range of important settings, our results may generalize beyond the instances we studied. Potentially, these results could be relevant to our understanding and predictions of all spreading phenomena driven by substitutions, from electric cars to scientific paradigms, and from renewable energy to new healthy habits.
This work also opens up a number of directions for future investigations. For example, what is the role social network plays in substitutive dynamics? Unfortunately, regulations in the country from which the mobile-phone dataset was collected prohibited us from obtaining any social network information. Nevertheless, the mobile phone setting may offer a distinctive opportunity to address this question, if mobile communication records could be collected in future studies to construct social connections among users18,19,48–51. Advances along this direction will further our understanding of substitutive dynamics and could also contribute meaningfully to the literature on social dynamics23,28,29,39,52.

Furthermore, within each system, the obtained parameters for different constituents show interesting correlations (e.g. We find negative correlations between the anticipation parameter h and fitness η, where the Pearson coefficient is -0.1642 for handsets, -0.5125 for automobiles, -0.13 for mobile applications and -0.416 for scientific fields, respectively). While such correlations do not affect the conclusion of the present paper, as our model estimates its parameters jointly and is compatible with any correlations real systems might possess (Supplementary Note 4), the uncovered correlations suggest interesting directions for future studies. For example, one could better understand the different forces that may affect growth patterns by collecting auxiliary information on various constituents and inspecting their correlations with the model parameters. Such auxiliary information could also help us better understand why diverse constituents differ from each other both within and across different systems.

On a theoretical level, it would also be interesting to explore further connections between
our model with powerful theoretical tools offered by the epidemiology literature3, such as recent findings on clustered epidemics53,54 and multi-season models of outbreaks involving multiple pathogens with different levels of immunity55.

It is important to note that, because our model is minimal, it ignores various contextual mechanisms, such as marketing campaigns, promotional activities, or other platform-specific mechanisms, all of which could affect the studied phenomena. Although we analyzed large-scale datasets from four different domains, to what degree our results can be extended beyond studied systems is a question we cannot yet answer conclusively. However, the empirical and theoretical evidence presented in this paper provides a path toward the investigation of similar patterns in different domains, including reexaminations of familiar examples of spreading dynamics, as high-resolution data capturing early growth patterns become available. For example, there is growing evidence in the epidemiology community showing that the early spreading of certain diseases like Ebola and HIV exhibits deviations from exponential growth, featuring sub-exponential growth patterns31,32,56. Although power-law early growth has not received as much attention, our results suggest that it may be more common than we realize, and that the power law growth explained in our work may exist in even broader domains.
Methods.

Details of studied datasets are described in the main text and Supplementary Note 1 Data Descriptions. Empirical analyses of substitution patterns are detailed in Supplementary Note 2 Substitutions in Handset Dataset. Mathematical derivations of the minimal substitution model (Eqs. 4—8) are summarized in Supplementary Note 4 Minimal Substitution Models. The handset-specific parameters are obtained through maximum likelihood estimation, as described in Supplementary Note 4. The use of mobile phone datasets for research purposes was approved by the Northeastern University Institutional Review Board. Informed consent was not necessary because research was based on previously collected anonymous datasets.

Data availability.

Data necessary to reproduce the results in the manuscript are available. The automobile, smart-phone apps and scientific fields datasets are publicly available at https://github.com/chingjin/substitution.github.io. The mobile phone dataset is not publicly available due to commercially sensitive information contained, but are available from the corresponding author (dashun.wang@kellogg.northwestern.edu) on reasonable requests.

Figure 1
Figure 2
Figure 3
Figure 4
References:

5. Gladwell, M. *The tipping point: How little things can make a big difference* (Little, Brown, 2006).

47. Watts, D. J. *Everything is obvious:* Once you know the answer (Crown Business, 2011).

Competing Interest. The authors declare that they have no competing interests.

Acknowledgements. The authors thank B. Uzzi, J. Colyvas, J. Chu, M. Kouchaki, Q. Zhang, Z. Ma, and all members of Northwestern Institute on Complex Systems (NICO) for helpful comments. The authors are indebted to A.-L. Barabási for initial collaboration on this project and invaluable feedback on the manuscript. This work was supported by the Air Force Office of Scientific Research under award number FA9550-15-1-0162 and FA9550-17-1-0089, and National Science Foundation grant SBE 1829344. C.S. was supported by the National Science Foundation (IBSS-L-1620294) and by a Convergence Grant from the College of Arts & Sciences, University of Miami. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author Contributions. All authors designed the research. C.J., C.S. and D.W. did the analytical and numerical calculations. C.J. C.S., J.B. and D.W. analyzed the empirical data. D.W. was the lead writer of the manuscript.
Figure 1. Power law growth patterns in substitutive systems. (A) Normalized impacts of all 885 handsets, which have been released for at least six months and used by 50 users in total (Supplementary Note 1). To compare different curves, we normalized $I(t)$ by $I(1)$, the number of users on the first day of release. We use the first six months to measure the early growth phase for each handset, finding that a considerable number of products do not follow exponential (black dotted line) or logistic growth (grey dashed line). Instead, they prefer power law growth patterns (statistical tests for growth comparison see Supplementary Note 1). (B to D) Similar normalized impacts of 126 automobiles (B), 2672 smart phone apps (C) and 6,399 scientific fields (D). Here we show the early growth pattern of all products whose records are long than their early growth period (four months for automobiles, seven days for smart phones apps and eighteen years for scientific fields), finding again that a large number of products prefer power law growth pattern than exponential functions. Note that the exponential and logistic curves are shown as guide to the eye, meant to highlight a conceptual difference between exponential and power law functions. Interested readers should refer to Supplementary Figure 4, 12 and 14 for more quantitative evaluations. (E to H) (E) Normalized impacts of 240 different handsets as a function of time. We find, for a substantial fraction of handsets (240 handsets out of 885, 27.12%), their early growth patterns can be well approximated by power laws ($R^2 \geq 0.99$): $I(t) \sim t^n$. The color of the line corresponds to the associated power law exponent for each handset, η. The solid lines are $y = x^{1/2}$, $y = x$, and $y = x^2$, respectively, as guides to the eye. The black dotted line corresponds to the exponential function following $y \sim e^x$ and the grey dashed line corresponds to the logistic function following $y \sim L/(1+e^{-k(x-x_0)})$, highlighting their fundamentally different nature comparing with
power law growth patterns (see Supplementary Note 1 for statistical test for fitting). (F-H) Similar power law growth patterns are observed in other three datasets, where we find 37 out of 126 cars (29.37%), 1,022 out of 2,672 apps (38.25%) and 1,743 out of 6,399 scientific fields (27.24%) can be well approximated by power laws. (I to L) We rescale the impact dynamics plotted in (E-H) by t^n, finding all curves collapse into $y = x$. (M to P) Distribution of power law exponents $P(\eta)$ for curves shown in (E-H).

Figure 2. Empirical substitution network. We used the backbone extraction method42 to construct a substitution network, capturing substitution patterns among handsets aggregated within a six-month period (January 2014—June 2014). Each node corresponds to one type of handset released prior to 2014 by one of the six major manufacturers. Node size captures its popularity, measured by the number of users of the particular handset at the time. Handsets are colored based on their manufacturers (node coloring), which fade with the age of handsets. If users substituted handset i with j, we add a weighted arrow pointing from i to j. The link weight captures the total substitution volumes between two handsets within the six-month period. Since the full network is too dense to visualize, here we only show the statistically significant links as identified by the method proposed in Ref.42 for p-value 0.05. We color the links based on the color of the substituting handset. The network vividly captures the widespread transitions from feature handsets to smart phones. Indeed, most cross-manufacturer substitution links are either yellow or green, indicating their substitutions by iPhones or Android handsets. Substitution patterns are also highly heterogeneous. A few pairs of handsets have high substitution volumes, e.g. between the successive generations of iPhones, but most substitutions are characterized by rather limited
volumes. The structural complexity shown in (A) is further coupled with a high degree of temporal variability. Indeed, the system turns into a widely different configuration every year, even for the most dominant handsets (Supplementary Figure 18B–E).

Figure 3. Empirical substitution patterns. (A) The number of new handsets launched per quarter as a function of time. We find new handsets are introduced at a constant rate. The most popular handset within each eight-month time window is highlighted by an image of the handset model. (B) Substitution probability $\Pi_{i\rightarrow j}$ is proportional to N_j, consistent with the preferential attachment effect. Inset shows $\Pi_{i\rightarrow j}$ is largely independent of N_i. The measurement is based on eight snapshots of observations sampled uniformly in time. Specifically, we choose the first month of each year from 2007–2014 to measure substitution flows to test the preferential attachment hypothesis. (C) Distribution of substitution rates $S_{i\rightarrow j}$. Here we show the distribution as a probability density function and we measured the substitution rates among handsets in January 2014. (D) Distribution of substitution rates $S_{i\rightarrow j}$ conditional on age of the substitute t_j. The distributions shift systematically to the left as t_j increases. (E) After rescaling substitution rates by t_j^{-1}, we measure $p(S_{i\rightarrow j}t_j|t_j)$, finding all seven curves in (D) collapse into one single curve. In the inset figure, we test the relationship between $S_{i\rightarrow j}$ and t_j by rescaling $S_{i\rightarrow j}$ by $t_j^{-\theta}$, finding that the case where the curves collapse onto each other when $\theta = 1$. (F) Distribution of substitution rates conditional on age of the incumbent (t_i). All curves collapse automatically onto one single distribution, indicating an independence between substitution rates and the age of incumbent handsets.

Figure 4. Universal impact dynamics. (A to D) Impact dynamics for products with similar
fitness \((\eta = 1.5 \pm 0.1)\), including 40 handsets (A), 9 automobiles (B) and 43 apps (C) and 505 scientific fields (D). (E to H) Data collapse for products shown in (A—D). After rescaling time and impact independently by \(\tilde{t}_i = t_i / \tau_i\) and \(\tilde{I}_i = I_i / (h_i \eta_i \tau_i \eta_i)\), we find all curves from four systems collapse into the same universal curve, as predicted by (8). (I) Data collapse for handsets with similar fitness \(\eta = 1.8 \pm 0.1\) (30 handsets). (J) Data collapse for handsets with similar fitness \(\eta = 2.0 \pm 0.1\) (22 handsets). (K) The universal functions shown in (E—J) are each associated with their respective universality classes that are solely determined by \(\eta\). Here we visualize the analytical function \(\tilde{I} = \gamma_\eta(\tilde{t})\), with \(\eta = 1.5, 1.8\) and 2.0. (L to O) The entire lifecycle can be rescaled as power laws if we properly normalize out the effect from the incomplete gamma functions. Indeed, because the function \(\gamma_\eta(x)\) has recurrence property \(\gamma_{\eta+1}(x) = \eta^\eta \gamma_\eta(x) - x^\eta e^{-x}\), (6) predicts that by defining \(Q \equiv (I(t)/h - \tau^\eta \gamma_{\eta+1}(t/\tau)) e^{t/\tau}\), we should expect \(Q = t^n\). Here we plot \(Q\) as a function of \(t^n\) for all fitted products in the four systems, where the color of each line corresponds to the learned fitness parameter (See also Supplementary Note 4, Supplementary Figure 25–28 for discussions about curve collapse and comparison with other models.) (P) \(I^\infty\) as a function of \(I(t^*)\) for the handsets with different fitness \(\eta\) shown in (L). \(I^\infty\) and \(t^*\) are calculated through the system parameters: \(h\), \(\eta\), and \(\tau\). \(I(t^*)\) is the handset’s impact at time \(t^*\) obtained from the empirical data (Supplementary Note 4). (Q) Scatter plot for the ratio \(I^\infty/I(t^*)\) as a function of \(\eta\) for the same handsets shown in (P). The error bar indicates one standard deviation. The solid line corresponds to the analytical prediction by (10).