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Diffusion processes impact broad aspects of human soci-
ety1–5, ranging from the spread of biological viruses3,6–8 to 
the adoption of innovations4,9–14 and knowledge15,16 and to 

the spread of information17–19, cultural norms and social behav-
iour20–23. Despite numerous studies that span multiple disciplines, 
our knowledge is mainly limited to spreading processes in non-
substitutive systems. Yet, a considerable number of ideas, prod-
ucts and behaviours spread by substitution—to adopt a new 
one, agents often need to give up an existing one. For example, 
the development of science hinges on scientists’ relentlessness in 
abandoning a scientific framework once one that offers a better 
description of reality emerges24. The same is true for adopting a 
new healthy habit or other durable items, such as mobile phones, 
cars or homes.

While substitutions play a key role from science to economy, 
our limited understanding of such processes stems from the lack of 
empirical data tracing their characteristics. To study the dynamics 
of substitutions, we explore growth patterns in four different substi-
tutive systems where detailed dynamical patterns are captured with 
fine temporal resolution (see Supplementary Note 1 for detailed 
data descriptions). Our first dataset captures, with daily resolution, 
3.6 million individuals choosing among different types of mobile 
handsets, recorded by a Northern European telecommunication 
company from January 2006 to November 2014. As an individual is 
unlikely to keep more than one mobile phone at a time, their adop-
tion of a new handset is typically associated with discontinuance of 
the old one. Here, we focus on handsets that have been released for 
at least 6 months and used by at least 50 users in total (885 differ-
ent handset models). Our second dataset captures monthly transac-
tion records of 126 automobiles sold in the North America between 
2010 and 2016. These automobiles have been released for at least 
4 months before the data were collected. Automobiles represent a 
similar example as mobile handsets, in which adoptions are largely 
driven by substitutions, given the limited number of automobiles a 
typical household may have.

While handset and automobile adoptions are relatively exclusive, 
in reality, there are also ‘hybrid’ substitutive systems, in which the 
definition of substitutions is less strict. To test whether results pre-
sented in this paper may apply to such systems, we collected two 
additional datasets: one dataset traces the number of daily down-
loads for new smartphone apps published in the App store (2,672 
most popular apps in the iOS systems from November to December 
2016), and the other dataset is a scientific publication dataset, 
recording 246,630 scientists substituting for 6,399 scientific fields 
from 1980 to 2018. Indeed, usages of smartphone apps are subject 
to constraints of time and device space; hence, a new app down-
loaded reduces the usage of other similar apps, if not replacing them 
all together. Yet, at the same time, apps may also be downloaded 
without involving substitutions. Similarly, while many scientists 
may focus on one research area at a time25, where research direc-
tion shifts may be characterized by substitutions, there are also peo-
ple who explore several directions simultaneously and, therefore, 
an increased focus on one direction does not necessarily imply a 
decreased attention to others.

Results
A common prediction by current modelling frameworks, from 
epidemiological models3,6 to disordered systems2 to diffusion of 
innovations4,12, is that early growth patterns follow an exponential 
function. To test this prediction, we measure the impact of each 
mobile handset, automobile model, smartphone app and scien-
tific field in our four datasets. More specifically, we calculated I(t), 
which measures the number of individuals who bought the handset 
up to time t since its availability (Fig. 1a), cumulative sales of an 
automobile (Fig. 1b), daily downloads of an app (Fig. 1c) and the 
number of publishing scientists in a field (Fig. 1d), respectively. To 
compare across different constituents, we normalized I(t) by its ini-
tial value I(1) (that is, the first day or year when the constituent was 
introduced), and first focused on their early growth periods only 
(Supplementary Note 1).
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We find that, in contrast to the exponential curves predicted 
by canonical models, for many of the constituents across the four 
systems, their growth trajectories appear to follow straight lines on 

a log–log plot (Fig. 1a–d), suggesting that they may be described 
by power-law functions. This observation prompts us to system-
atically test whether power-law or exponential-class functions  
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Fig. 1 | Power-law growth patterns in substitutive systems. a, Normalized impacts of all 885 handsets, which have been released for at least 6 months and 
used by 50 users in total (Supplementary Note 1). To compare different curves, we normalized I(t) by I(1), the number of users on the first day of release. 
We use the first 6 months to measure the early growth phase for each handset, finding that a considerable number of products do not follow exponential 
(y~ex, black dotted line) or logistic growth ( ∕ + − −y L e~ (1 )k x x( )0 , grey dashed line). Instead, they prefer power-law growth patterns (for the statistical tests 
used for growth comparison, see Supplementary Note 1). Here we fitted each curve with a power law function I(t) ~tη. The colour of the line corresponds 
to the fitted power-law exponent for each handset. The solid lines are y = x1/2, y = x and y = x2, respectively, as guides to the eye. b–d, Normalized impacts 
similar to those in a of 126 automobiles (b), 2,672 smartphone apps (c) and 6,399 scientific fields (d). Here we show the early growth pattern of all 
products whose records are longer than their early growth period (4 months for automobiles, 7 d for smartphones apps and 18 years for scientific fields), 
finding again that a large number of products prefer power-law growth patterns than exponential functions. Note that the exponential and logistic curves 
are shown as a guide to the eye, meant to highlight a conceptual difference between exponential and power-law functions. Interested readers should refer 
to Supplementary Figs. 4, 12 and 14 for more quantitative evaluations. e, Normalized impacts of 240 different handsets as a function of time. We find that, 
for a substantial fraction of handsets (240 of 885 handsets (27.12%)), their early growth patterns can be well approximated by power laws (R2 ≥ 0.99): 
I(t) ~tη. The colour of the line corresponds to the associated power-law exponent for each handset, η. The exponential and logistic curves are shown as 
guides to the eye as those in a, highlighting their fundamentally different nature compared with power-law growth patterns (see Supplementary Note 1 for 
the statistical tests used for fitting). f–h, Power-law growth patterns similar to those in e are observed in three other datasets, where we find that growth 
patterns for 37 of 126 cars (29.37%) (f), 1,022 of 2,672 apps (38.25%) (g) and 1,743 of 6,399 scientific fields (27.24%) (h) can be well approximated by 
power laws. i–l, We rescale the impact dynamics plotted in e–h, respectively, by tη, finding that all curves collapse into y = x. m–p, Distribution of power-law 
exponents P(η) for curves shown in e–h, respectively.
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(exponential or logistic) are preferred to describe the early growth 
curves observed in our four systems. Using the Akaike information 
criterion, we find that 98.6% handsets, 83.5% automobiles, 79.6% 
apps and 74.1% scientific fields favour power-law early growth 
patterns (Supplementary Note 1 and Supplementary Fig. 12). We 
further tested the robustness of this result by applying different sta-
tistical tests (Supplementary Note 1) and by varying the definition 
of early growth periods in each dataset (Supplementary Fig. 14), and 
for both cases, we arrived at the same conclusion.

Note that, although for a vast majority of the curves (80.18–
99.21%) power law offers a better fit than exponential-class mod-
els (see Supplementary Note 1 and Supplementary Figs. 4, 12 and 
14), there is variability in how well a power-law function fits dif-
ferent curves. Moreover, there is a small fraction (0.79–19.82%) 
of constituents whose early growth patterns can be described 
by exponential functions, suggesting that, for these constitu-
ents, their growth patterns are consistent with the predictions 
of existing models. To ensure that our fitting procedure is not 
biased against exponential functions, we analysed spreading pat-
terns of 168 cases of flu pandemics in the United States, where 
early growth patterns are expected to follow exponential func-
tion. We find that the fitting results indeed systematically prefer 
exponential function to power law (Supplementary Note 1 and 
Supplementary Fig. 15). Together, Fig. 1a–d suggest the existence 
of a non-trivial fraction (74.1–98.6%) of constituents, whose early 
growth patterns follow a power-law function rather than an expo-
nential function.

To examine whether there is indeed a fraction of growth tra-
jectories that can be well described by power-law growth patterns, 
we further restrict the criteria for classifying power laws by select-
ing those with a high R2 in fitting (for example, R2 > 0.99). We find 
that, under the stricter criteria, a substantial fraction of constitu-
ents remained in each of the four systems (27.12% handsets, 29.37% 
automobiles, 38.25% apps and 27.24% scientific fields) (Fig. 1e–h). 
The results indicate that, for a substantial fraction of constituents 
across the four substitutive systems that we studied, their impacts 
grow following

∕ = ηI t I t( ) (1) (1)i

We also noticed that within each system, the slopes of power-
law curves shown in Fig. 1e–h differ across different constituents, 
suggesting that each of them is characterized by constituent-spe-
cific exponents (ηi). To test this hypothesis, we plotted each curve 
in Fig. 1e–h in terms of ηt i. As constituents differ from each other, 
the rescaled curves show variations around the function y = x. Yet, 
we find that most curves are reasonably collapsed onto the same 
function (Fig. 1i–l). The rescaled growth patterns for all products 
across our four datasets are also shown in Supplementary Fig. 6. 
We find that, although as expected, their growth patterns show 
more variations around y = x, they are clearly different from expo-
nential growth patterns.

The observations documented in Fig. 1a–l are somewhat unex-
pected for two main reasons. First, the four systems that we stud-
ied differ widely in their scope, scale, temporal resolution and user 
demographics. Yet, we find, independent of the nature of the sys-
tem and the identity of the constituents, their early growth follows 
similar patterns, showing that a power-law scaling emerges across 
all four systems. Second, exponents ηi are mostly non-integers (Fig. 
1m–p). Power-law growth with such non-integer exponents is rare 
because it corresponds to non-analytic behaviour. Indeed, due to 
the inability to express them in terms of Taylor series around t = 0, 
power laws with non-integer exponents indicate singular behaviour 
around the release time (the η⌈ ⌉-th order derivative diverges at 
t = 0). Current modelling frameworks2–4,6,12 rely on functions with-
out singularities and, hence, are unable to anticipate non-analytic 

solutions (detailed descriptions and comparisons to existing models 
are described in Supplementary Notes 1 and 3). Indeed, compared 
with exponential growth, power law encodes an early divergence, 
corresponding to an explosive growth at the moment when new 
constituents are introduced. Yet, following this brief singularity, the 
number of users grows much more slowly than what exponential 
functions predict, suggesting that substitutive innovations spread 
more slowly beyond the initial excitement.

Keep in mind, however, that not all curves follow power-law 
growth patterns, and a few of them can indeed be described by 
exponential functions, suggesting that substitutions and traditional 
adoptions may coexist in our systems. Nevertheless, these results 
document the existence of power-law early growth curves in the 
substitutive systems that we studied, a pattern that is not anticipated 
by traditional modelling frameworks, and suggests that substitutive 
systems may be governed by different dynamics.

To be sure, power laws can be generated in real networks due 
to the growth of the systems26,27. To check whether Fig. 1 may be 
explained by gradual addition of new users to the underlying net-
work, we removed new mobile subscribers in the mobile phone 
dataset and again measured I(t) for different handsets. We found 
that the power-law scaling holds the same (Supplementary Note 3 
and Supplementary Fig. 19), indicating that the scaling observed in 
Fig. 1 is governed by mechanisms that operate within the system 
and is not driven by growth of the system. Another possible origin 
of power-law growth is rooted in the bursty nature of human behav-
iour28,29, in which the inter-event time between adoptions follows a 
power-law distribution. We measured this quantity directly in the 
mobile phone dataset, finding that the data systematically reject 
power law as a viable function to describe the inter-event time dis-
tribution (P < 10−3; Supplementary Fig. 20). It is also worth noting 
that sub-exponential growth patterns have recently been found in 
the spread of epidemics such as Ebola and human immunodefi-
ciency virus (HIV) infection30–32. There are also phenomenological 
models of spreading dynamics that take power-law early growth as 
their assumptions31,33,34, in addition to a large body of literature on 
modelling popularity dynamics35–41. While a mechanistic explana-
tion is still lacking, these examples demonstrate that the power-law 
early growth patterns uncovered here may hold relevance to a broad 
array of areas. Together, these results raise a fundamental question: 
what is the origin of the power-law growth pattern.

Quantifying substitution patterns. A common characteristic of 
the four studied systems is that they evolve by substitutions. In this 
respect, mobile phones represent an ideal setting for the empirical 
investigation of substitutive processes. Indeed, each time a user pur-
chases a handset, the transaction history is recorded by telecom-
munication companies. Anonymized phone numbers together with 
their portability across devices provide individual traces for substi-
tutions. We examined detailed user histories in the mobile phone 
dataset, finding that the adoption and discontinuance histories are 
indeed predominantly represented by substitutions (Supplementary 
Note 2). Each type of handset is substituted by a large number of 
other handsets, hence substitution patterns are characterized by 
a dense, heterogeneous network that evolves rapidly over time 
(〈k〉 = 73.6; Supplementary Figs. 17b,c and 18). To visualize substi-
tution patterns, we applied a backbone extraction method42 to iden-
tify statistically significant substitution flows for each handset given 
its total substitution volumes (Fig. 2). While mobile handsets have 
changed substantially over the years, undergoing a ubiquitous shift 
from feature phones to smartphones, the rate at which new handsets 
enter the market remained remarkably stable (Fig. 3a), highlight-
ing the highly competitive nature of the system: ensuing generations 
of new handsets enter the market in a somewhat regular manner, 
substituting for the incumbent, thereby affecting the rise and fall of 
their popularities (Supplementary Fig. 18a).
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To uncover the mechanisms governing substitution dynamics, 
we note that the rate of change in Ni(t), the number of users for 
handset i at time t, can be expressed in terms of the probability for 
individuals to transition from all other handsets (k) to i, Πk→i, sub-
tracted by those leaving i for other handsets (j), Πi→j:

∑ ∑= Π − Π→ →
N t

t
t N t t N t

d ( )
d

( ) ( ) ( ) ( ) (2)
i

k
k i k

j
i j i

The key to solving the master equation (2) is to determine Πi→j, the 
substitution probability for a user to substitute handset i for j at time 
t. As we show next, Πi→j is driven by three mechanisms: preferential 
attachment, recency and propensity.

Figure 3b shows that Πi→j is independent of the number of indi-
viduals using i (Ni), but proportional to Nj: Πi→j ~ Nj. This result 
captures the well-known preferential attachment effect15,26: more 

popular handsets are more likely to attract new users than their less 
popular counterparts, consistent with existing models that can be 
used to characterize substitutions43,44. Yet Nj by itself is insufficient 
to explain Πi→j. Indeed, we further normalized Πi→j by Nj, by defin-
ing Si→j ≡ Πi→j/Nj, the substitution rate at which handset j substitutes 
for i. We find that P(Si→j) follows a fat-tailed distribution spanning 
several orders of magnitude (Fig. 3c), indicating that substitution 
rates are characterized by a high degree of heterogeneity, in which 
Si→j between some handset pairs are orders of magnitude higher 
than others.

To identify mechanisms responsible for the observed heteroge-
neity in Si→j, we grouped Si→j based on the age of the substitutes tj, 
the number of days elapsed since its release date, and measured the 
conditional probability P(Si→j|tj) for each group. We found that as 
substitutes grow older (increasing tj), P(Si→j|tj) shifts systematically 
to the left (Fig. 3d), indicating that substitution rates decrease with 
the age of substitutes—newer handsets substitute for the incumbents  
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at a higher rate. Yet, within each group, the heterogeneity of Si→j per-
sisted, as P(Si→j|tj) again follows a fat-tailed distribution. However, 
once we rescaled the distributions P(Si→j|tj) with tj, we found that all 
seven distributions in Fig. 3d collapse into one single curve (Fig. 3e). 

To quantify the relationship between Si→j and tj, we took an ansatz 
~ θ

→
−S ti j j  and rescaled Si→j by θ−t j . As we varied θ, we monitored the 

diversity of the curves, finding that it reaches its minimum around 
θ = 1 (Fig. 3e, inset), indicating that Si→j is inversely proportional 
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to tj. The data collapse in Fig. 3e demonstrates that a single distri-
bution characterizes substitution rates, independent of the age of 
substitutes:

F∣ ~→ →P S t t S t( ) ( ) (3)i j j j i j j

In other words, substitution rates Si→j can be decomposed into two 
independent factors: one is the universal function F x( ), which is 
independent of the substitute’s age, capturing an inherent propen-
sity-based heterogeneity among handsets. Denoting the propensity 
by λij ≡ Si→jtj, equation (3) indicates λ~→Si j ij t

1

j
. We repeated our anal-

ysis for ti, that is, the age of incumbent handset i when substituted, 
finding that all curves of P(Si→j|ti) automatically collapsed onto each 
other (Fig. 3f). Hence, when incumbents are substituted, whether 
they were released merely a few months ago (small ti) or have 
existed in the market for years (large ti), their substitution rates fol-
low the same distribution, documenting an independence between 
substitution rates and the age of the incumbents. Mathematically, 
Fig. 3f indicates P(Si→j|ti) = P(Si→j).

Together, Fig. 3d–f helped us to uncover two more mechanisms 
governing substitutions, recency and propensity: substitution rates 
depend on the recency of substitutes, following a power law 1/tj. The 
uncovered power-law decay has a simple origin, documenting the 
role of competitions in driving the obsolescence of handsets. Indeed, 
when j first entered the system, being the latest handset (small tj), 
it substitutes for the incumbent at its highest rate. Yet with time, 
more and more newer handsets are introduced. The constant rate 
of new arrivals (Fig. 3a) implies that the number of alternatives to j 
grows linearly with tj. Hence, if we pick one handset randomly, the 
probability for handset j to stand out among its competitors decays 
as 1/tj. The temporal decay is further modulated by the inherent 
propensity λij between two handsets, capturing the extent to which 
a certain handset is more likely to substitute for some handsets than 
others. Taken together, Fig. 3b–f predict

λΠ =→ N
t
1

(4)i j ij j
j

Minimal substitution model. Most importantly, equation (4) 
defines a minimal substitution model, which, as we show next, 
naturally leads to the observed power-law early growth patterns. 
In this model, the system consists of a fixed number of individu-
als, with new handsets being introduced constantly (Fig. 3a). In 
each time step, an individual substitutes their current handset i for 
new handset j with probability Πi→j, according to equation (4). The 
propensity λij between handset i and j is drawn randomly from a 
fixed distribution. Our results are independent of specific distribu-
tions of λij. We can solve our model analytically in its stationary 
state (Fig. 3a) by plugging equation (4) into equation (2), yielding 
(Supplementary Note 4):

= η τ− ∕N t h t e( ) (5)i i i i
ti i i

indicating that the number of individuals using handset i is gov-
erned by three parameters: ηi, hi and τi. η λ≡ ∑ → Ni k k i k captures the 
fitness of a handset, measuring the total propensity for users to 
switch from all other handsets to i. The anticipation parameter h 
arises from the boundary condition at ti = 0 when solving the dif-
ferential equation (2), approximating the number of individuals 
using handset i when ti = 1, which captures users’ initial excitement 
for a particular handset. τi is the longevity parameter, as it captures 
the characteristic time scale for i to become obsolete. Indeed, defin-
ing t *i  as the time when a handset reaches its maximum number of 
users, equation (5) predicts that the peak time t *i  is proportional to 
its longevity parameter and fitness: η τ=t *i i i.

The impact of handset i, that is, its cumulative sales, can be cal-
culated by integrating all transition flows from other handsets to i 
before ti: ∫= ∑ Π →I t N t( ) di i

t
k k i k0

i , yielding:

η τ γ τ= ∕η
ηI t h t( ) ( ) (6)i i i i i i i

i
i

where ∫γ ≡η
η− −t x e x( ) d

t x
0

1  is the lower incomplete gamma func-
tion. Hence, in the early stage of a life cycle (small ti), equation (6) 
predicts that the impact of handset i grows following a power law:

= ηI t h t( ) (7)i i i i
i

where the growth exponent is uniquely determined by the fitness 
parameter ηi, equivalent to the power-law exponent discovered 
in equation (1). Equation (7) indicates that the specific power-
law exponent for each constituent is governed by its propensity 
to substitute for the incumbents in the system. The higher the 
fitness, the steeper the power-law slope, hence, the faster the 
take-off in the number of users. The power-law growth is further 
modulated by the anticipation parameter h, capturing the impact 
difference during the initial release. Note that it may take some 
time for model parameters to reach their stationary state, which 
may affect the validity of equation (5) and equation (7). To this 
end, we performed agent-based simulations of the model, finding 
that the parameters reach stationary states faster than the empiri-
cal time scale that we measured (Supplementary Notes 4 and 
Supplementary Fig. 21).

Universal impact dynamics. The minimal substitution model not 
only explains the early growth phase but it also predicts the entire 
life cycle of impacts (Supplementary Note 4). By using the rescaled 
variables: ∼ τ= ∕t ti i i and ∼ η τ= ∕ ηI I h( )i i i i i

i , we obtain:

∼∼ γ= ηI t( ) (8)i ii

Therefore, for handsets with the same fitness, their impact dynam-
ics can be collapsed into a single function after being rescaled by 
the three independent parameters (η, τ and h). Most interestingly, 
as the rescaling formula (equation (8)) is independent of the par-
ticulars of a system, it predicts that, constituents from different 
systems should all follow the same curve as long as they have the 
same fitness.

To test these predictions, we fit our model (equation (6)) to all 
four systems using maximum-likelihood estimation (Supplementary 
Note 4) to obtain the best-fitted three parameters (ηi, hi and τi) for 
each handset, automobile, smartphone app and scientific field. 
We first selected from the four systems, those with similar fitness 
(η = 1.5). Although their impact dynamics appear different from 
each other (Fig. 4a–d), we found that all curves simultaneously 
collapsed into one single curve after rescaling (Fig. 4e–h). To test 
for variable fitness, we selected two additional groups of handsets 
(η = 1.8 and η = 2.0), finding that the rescaled impact dynamic in 
both groups can be well approximated by their respective universal-
ity classes predicted by equation (8) (Fig. 4i,j). The universal curves 
correspond to the associated classes of the incomplete gamma func-
tions γ ̃η t( )ii

, which only depend on the fitness parameter η (Fig. 4k). 
The model also predicts that, if we properly normalize out the effect 
by γ ̃η t( )ii

, we can rescale the entire life cycle to a power law solely 
governed by η. Indeed, equation (6) indicates that, by defining Q
(t) ≡ [I(t)/h − τηγη+1(t/τ)]et/τ, Q should grow following a power law, 
Q(t) = tη (Supplementary Note 4). We find agreement across the four 
systems that we studied (Fig. 4l–o). Together, Fig. 4a–o documents 
regularities governing impact dynamics, which appear to hold both 
within a system and across different complex substitutive systems. 
Given the diversity of the studied systems and the numerous factors 
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Fig. 4 | Universal impact dynamics. a–d, Impact dynamics for products with similar fitness (η = 1.5 ± 0.1), including 40 handsets (a), 9 automobiles (b), 
43 apps (c) and 505 scientific fields (d). e–h, Data collapse for products shown in a–d, respectively. After rescaling time and impact independently by 
∼ τ= ∕t ti i i and Ĩ ητ= ∕ ηI h( )i i i i i

i , we found that all curves from four systems collapse into the same universal curve, as predicted by equation (8). i, Data collapse 
for handsets with similar fitness η = 1.8 ± 0.1 (30 handsets). j, Data collapse for handsets with similar fitness η = 2.0 ± 0.1 (22 handsets). k, The universal 
functions shown in e–j are each associated with their respective universality classes that are solely determined by η. Here we visualize the analytical 
function ∼Ĩ γ= η t( ), with η = 1.5 (black line), 1.8 (blue line) and 2.0 (green line). l–o, The entire life cycle can be rescaled as power laws if we properly normalize 
the effect from the incomplete gamma functions. Indeed, because the function γη(x) has recurrence property γη+1(x) = ηγη(x) − xηe−x, equation (6) predicts 
that, by defining Q ≡ (I(t)/h − τηγη+1(t/τ))et/τ, we should expect Q = tη. Here we plot Q as a function of tη for all fitted products in the four systems (handset 
(l), automobile (m), app (n) and scientific field (o)), where the colour of each line corresponds to the learned fitness parameter (see also Supplementary 
Note 4 and Supplementary Figs. 25–28 for discussions about curve collapse and comparison with other models.) p, I∞ as a function of I(t*) for the handsets 
with different fitness η shown in l. I∞ and t* are calculated through the system parameters: h, η and τ. I(t*) is the handset’s impact at time t* obtained from 
the empirical data (Supplementary Note 4). q, Scatter plot for the ratio I∞/I(t*) as a function of η for the same handsets shown in p. The error bars indicate 
1 s.d. The solid line corresponds to the analytical prediction by equation (10).
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that determine the dynamics of spreading processes, ranging from 
initial seeds and timing45,46 to social influence13,22 to a large set of 
often unobservable factors47, this level of agreement is somewhat 
unexpected.

Linking short-term and long-term impacts. The minimal sub-
stitution model predicts an underlying connection between short-
term and long-term impact. Indeed, we can calculate the ultimate 
impact—the total number of a particular handset, automobile, 
smartphone app or scientific field, ever sold, downloaded or 
studied in its lifetime—by taking the t → ∞ limit in equation (6), 
obtaining:

η τ= Γ + η∞I h ( 1) (9)i i i i
i

where ∫Γ ≡
∞ − −z x e x( ) dz x

0
1  corresponds to the gamma function. A 

comparison of equation (6) and equation (9) reveals that ultimate 
impact and the impact at the peak number of users follow a simple 
scaling relationship

η= Φ
∞I

I t( )
( ) (10)*

i

i i
i

where ηΦ ≡ η
η

Γ
γη

( ) ( )
( )

. That is, ∞Ii  scales linearly with peak impact 
I t( )*i i , and their ratio is determined only by the initial power-law 
exponent ηi. To validate equation (10), we found that ∞Ii  and I t( )*i i  
follow a clear linear relationship in our dataset for different values 
of η (Fig. 4p). In addition, Fig. 4p suggests that the relationship 
posts a slight shift as η increases. The rather subtle shift is also con-
sistent with equation (10), as Φ(η) increases slowly with η (Fig. 4q). 
Therefore, the uncovered power-law growth patterns potentially 
offer a link between short-term and long-term impact in substitu-
tive systems.

Discussion
In summary, here, we analysed a diverse set of large-scale data 
pertaining to substitutive processes, finding that early growth pat-
terns in substitutive systems do not follow the exponential growth 
customary in spreading phenomena. Instead, they tend to follow 
power laws with non-integer exponents, indicating that they start 
with an initial explosive adoption process, followed by a much 
slower growth than expected in normal diffusion. Analysing pat-
terns of 3.6 million individuals substituting for different mobile 
handsets, we uncovered three elements governing substitutions. 
Incorporating these elements allowed us to develop a minimal 
model for substitutions, which predicts analytically the power-law 
growth patterns observed in real systems, and collapses growth 
trajectories of constituents from rather diverse systems into  
universal curves.

Together, the results reported in this paper unpack the origin of 
robust self-organization principles emerging in complex substitu-
tive systems, and demonstrate a high degree of convergence across 
the systems that we examined. Given the ubiquitous role that sub-
stitutions play in a wide range of important settings, our results 
may generalize beyond the instances that we studied. Potentially, 
these results could be relevant to our understanding and predic-
tions of all spreading phenomena driven by substitutions, from 
electric cars to scientific paradigms, and from renewable energy to 
new healthy habits.

This work also opens up numerous directions for future investi-
gations. For example, what is the role social network plays in sub-
stitutive dynamics? Unfortunately, regulations in the country from 
which the mobile phone dataset was collected prohibited us from 
obtaining any social network information. Nevertheless, the mobile 

phone setting may offer a distinctive opportunity to address this 
question, if mobile communication records could be collected in 
future studies to construct social connections among users18,19,48–51. 
Advances along this direction will further our understanding of 
substitutive dynamics and could also contribute meaningfully to the 
literature on social dynamics23,28,29,39,52.

Furthermore, within each system, the obtained parameters for 
different constituents show interesting correlations (for example, 
we find negative correlations between the anticipation parameter h 
and fitness η, where the Pearson coefficient is −0.1642 for handsets, 
−0.5125 for automobiles, −0.13 for mobile applications and −0.416 
for scientific fields, respectively). While such correlations do not 
affect the conclusion of the present paper, as our model estimates 
its parameters jointly and is compatible with any correlations that 
real systems might possess (Supplementary Note 4), the uncovered 
correlations suggest interesting directions for future studies. For 
example, one could better understand the different forces that may 
affect growth patterns by collecting auxiliary information on vari-
ous constituents and inspecting their correlations with the model 
parameters. Such auxiliary information could also help us to better 
understand why diverse constituents differ from each other both 
within and across different systems.

On a theoretical level, it would also be interesting to explore 
further connections between our model with powerful theoreti-
cal tools offered by the epidemiology literature3, such as recent 
findings on clustered epidemics53,54 and multi-season models of 
outbreaks involving multiple pathogens with different levels of 
immunity55.

It is important to note that, because our model is minimal, it 
ignores various contextual mechanisms, such as marketing cam-
paigns, promotional activities or other platform-specific mecha-
nisms, all of which could affect the studied phenomena. Although 
we analysed large-scale datasets from four different domains, to 
what degree our results can be extended beyond studied systems 
is a question that we cannot yet answer conclusively. However, the 
empirical and theoretical evidence presented in this paper provides 
a path towards the investigation of similar patterns in different 
domains, including re-examinations of familiar examples of spread-
ing dynamics, as high-resolution data capturing early growth pat-
terns become available. For example, there is growing evidence in 
the epidemiology community showing that the early spreading of 
certain diseases, such as Ebola and HIV infection, exhibits devia-
tions from exponential growth, featuring sub-exponential growth 
patterns31,32,56. Although power-law early growth has not received as 
much attention, our results suggest that it may be more common 
than we realize, and that the power-law growth explained in our 
work may exist in even broader domains.

Methods
Details of the studied datasets are described in the main text and Supplementary 
Note 1. Empirical analyses of substitution patterns are detailed in Supplementary 
Note 2. Mathematical derivations of the minimal substitution model (equations 
(4)–(8)) are summarized in Supplementary Note 4. The handset-specific 
parameters are obtained through maximum-likelihood estimation, as described 
in Supplementary Note 4. The use of mobile phone datasets for research purposes 
was approved by the Northeastern University Institutional Review Board. Informed 
consent was not necessary because research was based on previously collected 
anonymous datasets.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data necessary to reproduce the results in the manuscript are available. The 
datasets for automobiles, smartphone apps and scientific fields are publicly 
available at https://chingjin.github.io/substitution/. The mobile phone dataset is 
not publicly available due to commercially sensitive information contained, but is 
available from the corresponding author on reasonable request.
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Code availability
The custom code used is available at https://chingjin.github.io/substitution/.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection The mobile-phone dataset was obtained from the source. The Automobile dataset was collected from https://www.goodcarbadcar.net/ 
by using python 2.7. The smartphone app dataset was collected from https://apptopia.com by using python 2.7. The Scientific field 
dataset was obtained from Microsoft Academic Graph. 

Data analysis We use matlab for data analysis. The custom codes are available at https://github.com/chingjin/substitution.github.io.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data necessary to reproduce the results are available. The automobile, smart-phone apps and scientific fields datasets are publicly available at smart-phone apps 
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and scientific fields datasets are publicly available at https://github.com/chingjin/substitution.github.io. The mobile phone dataset is not publicly available due to 
commercially sensitive information contained, but are available from the corresponding author (dashun.wang@kellogg.northwestern.edu) on reasonable requests.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Behavioural & social sciences
Study design
All studies must disclose on these points even when the disclosure is negative.

Study description This is a quantitative study of diffusion and substitution patterns based on pre-existing datasets

Research sample We assembled our datasets from a range of different sources: (1) Our first dataset captures, with daily resolution, 3.6 Million individuals 
choosing among different types of mobile handsets, recorded by a Northern European telecommunication company from January 2006 
to November 2014. We focus on handsets that have been released for at least 6 months and used by at least 50 users in total (885 
different handset models). (2) Our second dataset captures monthly transaction records of 126 automobiles sold in the North America 
between 2010 and 2016. These automobiles have been released for at least four months before the data was collected. (3) Our third 
dataset traces the number of daily downloads for new smart-phone Apps published in the App store (2,672 most popular Apps in the iOS 
systems from November to December 2016). (4) our fourth one is a scientific publication dataset, recording 246,630 scientists 
substituting for 6,399 scientific fields from 1980 to 2018. 

Sampling strategy No statistical methods were used to predetermine sample size. 

Data collection This study is based on pre-existing datasets. 

Timing The mobile phone dataset was collected in the end of 2014. The automobile and smart-phone all datasets were collected in the end of 
2016. The scientific field dataset was collected in mid 2018.

Data exclusions The analysis has no data exclusions. Selection criteria within a dataset are described in the supplementary information.

Non-participation There are no participants in this study. 

Randomization This is a data driven study, not a randomized experiment.
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