MODELLING THE GLUCOSE-INSULIN-GLUCAGON DYNAMICS AFTER SUBCUTANEOUS ADMINISTRATION OF NATIVE GLUCAGON AND A NOVEL GLUCAGON ANALOGUE IN DOGS

Sabrina Lyngbye Wendt1,2,3, Carsten Boye Knudsen1, John Bagterp Jørgensen2, Henrik Madsen2, Ahmad Haidar3,4
1 Zealand Pharma A/S, 2 Technical University of Denmark, 3 Institut de Recherches Cliniques de Montréal, 4 McGill University

Background
Zealand Pharma has invented a glucagon analogue, ZP-GA-1, with increased stability in liquid formulation for treatment of hypoglycemia. A pharmacodynamic (PD) model is needed to compare ZP-GA-1 with marketed glucagon. We aim to develop a model of the complex glucose-insulin-glucagon dynamics based on physiology and data.

Methods
Five dogs were included in a randomized cross-over study. At four dosing occasions each dog received a SC bolus injection of 20 or 120 nmol/kg glucagon (GlucaGen®) or ZP-GA-1. Blood samples were collected at 0, 5, 10, 15, 20, 30, 40, 50, 60, 75, 110, 140, and 180 minutes after dose administration.

We adopted a physiological model of endogenous glucose production with multiplicative effects of insulin and glucagon and combined it with the Hovorka model of glucose and insulin. The model was fitted to each individual dataset by Maximum a Posteriori (MAP) estimation of model parameters given priors reported in literature using the CTSM package in R (version 3.1.0). Profile likelihood analysis was used to fixate unidentifiable parameters at prior mean values.

Results
For each identifiable model parameter, posterior probability distributions (teal and blue) are listed along with p-values (red) of two-tailed paired t-tests comparing glucagon and ZP-GA-1 model parameter values.