More on Stochastics and the Phenomenon of Line-Edge Roughness

Chris A. Mack
34th International Photopolymer Science and Technology Conference
Chiba, Japan, June 28, 2017
Conclusions

• We need more than just 3σ to understand roughness
 – We need the power spectral density (PSD) to understand the relationship between LWR and LCDU

• Using biased roughness can be very misleading
 – We need to measure the unbiased roughness

• After litho, resist blur = correlation length

• There is an optimum resist blur for stochastics

• New simple model predicts the optimum resist blur and the scaling of minimum LER
Randomness in Lithography

- Photon count
- PAG positions
- Absorption/acid generation
- Polymer chain length
- Blocking position
- Reaction-diffusion
- Dissolution
The Importance of Correlations

• **White noise**: uncorrelated, each random event is independent
 – Photon shot noise, absorption, chemical concentration, acid generation
 – Produces a flat power spectral density (PSD)

• **Correlating mechanisms**: random events that are not independent
 – Secondary electron generation, acid generation, reaction-diffusion, development front propagation
 – Lowers (smooths) the PSD on length scales below the correlation length (i.e., high frequency roughness)
Are these edges different?
All have the same 3σ roughness!

Knowing the roughness standard deviation is **not good enough**

$L = 512 \Delta x, \sigma = \text{fixed}$
The Power Spectral Density

PSD = variance per increment of frequency

1/f
What Gives the PSD its Shape?

Uncorrelated white noise

Acid diffusion

Correlation Length

PSD (nm3) vs. Frequency (1/nm)
The Power Spectral Density

\[\text{Variance} = \text{area under the curve} \]

\((\text{Derived from other three parameters}) \)

Correlation Length \(\xi \)

\[\frac{1}{2\pi \xi} \]

Slope \(\propto \) roughness exponent \(H \)

PSD(0)
The Same 3σ, but Different PSDs

$\xi = 10 \Delta x$
$H = 0.5$

These PSDs will have different device feature impact

$\xi = 100 \Delta x$
$H = 0.5$
Example 1: Does etch reduce roughness?

• Experiment: Measure roughness before and after etch
 – 3s roughness (for long lines) goes down
 – What happens to device features?

• We need to look at unbiased PSDs to understand the impact of etch on roughness
 – Does PSD(0) change?
 – How much does etch increase correlation length?
Before and After Etch: a biased view

Biased LWR Before Etch: 4.9 nm
Biased LWR After Etch: 3.6 nm

27% reduction

Biased PSD(0) is 12% lower
Before and After Etch: an unbiased view

Unbiased LWR Before Etch: 3.5 nm
Unbiased LWR After Etch: 2.6 nm

26% reduction

Etch increases the correlation length (7nm → 13nm)

Unbiased PSD(0) is unchanged

With Noise Subtraction

PSD (nm3)

Frequency (1/nm)
Does Etch Reduce Roughness?

• Biased measurement, without noise subtraction, gives a false picture since after etch SEM images generally have lower noise

• Only unbiased PSD measurement (after noise subtraction) gives you the right picture
 – In this example, etch increased the correlation length, but did not lower PSD(0)
 – Within-feature roughness will decrease due to etch, but LCDU will remain the same
Finite-Length Features

\[\sigma_{LWR}(L) \quad \text{Within-feature roughness} \]

LCDU: Feature-to-feature variation of mean CD
(local CDU)

\[\sigma_{CDU}(L) \]
Conservation of Roughness

• For all features of the same CD and pitch, for any length L,

$$\sigma^2_{CDU}(L) + \sigma^2_{LWR}(L) = \sigma^2_{LWR}(\infty)$$

• Different line lengths partition the total roughness into within-feature and feature-to-feature variation

$$\sigma^2_{CDU}(L) \approx \frac{PSD(0)}{L} \left[1 - \frac{\xi}{L}\right] \quad \sigma^2_{LWR}(\infty) \approx PSD(0) / [(2H + 1)\xi]$$
Conservation of Roughness

We need to measure $\sigma(\infty)$, PSD(0), and ξ to understand roughness for device features.
Measuring Roughness is Hard

• We need to measure the PSD parameters to understand how roughness impacts device features (LWR and LCDU)

• SEM images contain both random and systematic errors that bias our results
 – Random noise in the image produces white noise
 – Systematic field variations (intensity, distortion) increase the apparent low-frequency roughness

• Conclusions based on biased roughness measurements are often wrong
What is the EUV Image?

Here is a typical aerial image from an EUV scanner … or is it?

18nm HP
What is the EUV Image?

EUV image, average over 1nm X 1nm
Dose = 20 mJ/cm²
Line-Edge Roughness (Simple Model)

• Consider a small deviation in resist development rate (ΔR). The resulting change in resist edge position (x) will be approximately

$$\Delta x = \frac{dx}{dR} \Delta R$$

• For some random variation in development rate σ_R, the resulting LER is

$$\sigma_{LER} = \frac{\sigma_R}{dR/dx}$$
Lithography Information Transfer

- Lithography can be thought of as a sequential transfer of information.

Diagram:

1. Design
2. Mask
3. Aerial Image
4. Latent Image
5. Developed Resist Image
6. Etched Image

Steps:
- Mask Fabrication
- Image Formation
- Exposure and PEB
- Development
- Etch
Consider Exposure through Development

• The only source of information is the aerial image
 – Subsequent process steps do not add information
 – It is possible to add noise (increase σ) and lose information (decrease gradient), but the signal to noise can never improve

$$\sigma_{LER} = \frac{\sigma_R}{dR/dx} \geq \frac{\sigma_m}{dm/dx} \geq \frac{\sigma_h}{dh/dx} \geq \frac{\sigma_{I_{abs}}}{dI_{abs}/dx}$$

• A fundamental limit of LER is the last term in this sequence (you can’t do any better than the information in the image)
What is the LER limit?

• The distribution of the number of absorbed photons (N_{abs}) is Poisson

$$\sigma_{N_{abs}} = \sqrt{N_{abs}}$$

• The gradient of absorbed photons is determined by the image log-slope

$$ILS = \frac{d \ln I}{dx} = \frac{1}{N_{abs}} \frac{dN_{abs}}{dx}$$
What is the LER limit?

• The best possible LER is then

$$Best\ Case\ \sigma_{LER} = \frac{\sigma_{I_{abs}}}{dI_{abs}/dx} = \frac{1}{ILS \sqrt{N_{abs}}}$$

• How many photons are absorbed? It depends on the volume V you are looking at:

At the feature edge: $N_{abs} = \alpha VE$

$\alpha = $ resist absorption coefficient
$E = $ dose (#photons/area) incident on the volume
What is the Correct Volume to Average Over?

• Two suppositions about the ambit volume V:
• First,

\[V = \xi^3 \quad \text{where } \xi = \max(\text{polymer size, resist blur}) \]

• Second, after litho: resist blur = correlation length
 – Correlation length comes from measurement of the roughness power spectral density (PSD)
Complication: Blur lowers ILS

• Effective ILS is a function of resist blur

Diffusion: \[\frac{\partial \ln I_{\text{eff}}}{\partial x} \approx \frac{\partial \ln I}{\partial x} \left(e^{-2(\pi \xi / CD)^2} \right) \]

Reaction-Diffusion: \[\frac{\partial \ln I_{\text{eff}}}{\partial x} \approx \frac{\partial \ln I}{\partial x} \left(\frac{1 - e^{-2(\pi \xi / CD)^2}}{2(\pi \xi / CD)^2} \right) \]

where \(\xi = \) diffusion length and \(CD = \) half-pitch

Impact of Blur on ILS and LER

$$\text{Best Case } \sigma_{\text{LER}} = \frac{1}{\text{ILS}_{\text{eff}} \sqrt{\alpha E \xi^3}}$$

Optimum Blur:

- **Diffusion:** $\xi_{\text{opt}} \approx \frac{\text{CD}}{5}$
- **Reaction-Diffusion:** $\xi_{\text{opt}} \approx \frac{\text{CD}}{3}$

CD = 15 nm

![Graph](image-url)
Simple Model: Scaling Relationship

• Using the optimum resist blur,

$$\text{min } \sigma_{LER} \propto \frac{1}{\text{NILS} \sqrt{\alpha ECD}}$$

• This is a mathematical version of the RLS trade-off

• We can always make it worse!
Conclusions

• We need more than just 3σ to understand roughness
 – We need the power spectral density (PSD) to understand the relationship between LWR and LCDU

• Measuring biased roughness can be very misleading
 – We need the unbiased roughness

• After litho, resist blur = correlation length

• There is an optimum resist blur for stochastics

• New simple model predicts the optimum resist blur and the scaling of minimum LER
Thank You

Fractilia, LLC
Austin, Texas
512 887-3646
info@fractilia.com
www.fractilia.com