Measurement of Porosity in the Context of Fiber-Based Tissue Scaffolds

Markus Reiterer, Medtronic, PLC
Tom Bollenbach, ARMI
ARMI HQ, Macheester, NH
10 AUG2018
Solving the Inverse Problem

How far can I shoot

vs.

How big does my trebuchet need to be

Which scaffold properties will lead to fast fusion?

• Stiffness, strength
• Pore size, porosity
• Chemistry
Why Structure Matters

- Stiffness
- Strength
- Permeability
- Interconnectivity
- Homogeneity
- Neck radius
- Pore shape
- Specific surface area
- Periodicity
- Absorption rate
- (An)isotropy
- Cell proliferation
- Dissolution rate

Porosity & Pore Size Distribution

\[
\text{Porosity} = \frac{\text{Volume}_{\text{pore}}}{\text{Volume}_{\text{bulk}}}
\]

Which structural parameters will describe their properties sufficiently for tissue engineering applications.
Definitions

Porosity is a dimensionless number that describes the fraction of empty space in a material.

Volume based calculation:

\[\varepsilon = \frac{V_v}{V_b} \]

- \(\varepsilon \) ... porosity
- \(V_v \) ... void volume
- \(V_b \) ... apparent total bulk volume

Density based calculation:

\[\varepsilon = \frac{\rho_s - \rho_b}{\rho_s - \rho_{fl}} \]

- \(\varepsilon \) ... porosity
- \(\rho_s \) ... skeleton/fiber density
- \(\rho_b \) ... bulk density
- \(\rho_{fl} \) ... fluid density

Pore size:
- Smallest dimension within a pore
- Largest inscribable sphere (suggestion)

Throat size:
- Smallest dimension between two pores

Figure 5. Schematic cross-section of a porous solid (Globes et al., 2006).
Dimension and Mass Measurement

• Conceptually simple
• Dimensional measurement not trivial
 • Optical
 • Contact
• Weighing is simple
• Need to know true density to determine porosity
 • Closed porosity
 • Phase changes due to processing
Gravimetric Approach

\[\varepsilon = \frac{w_{sat} - w_{dry}}{w_{sat} - w_{im}} \]

\[V_b = \frac{w_{sat} - w_{im}}{\rho_{fl}} \]

\[V_p = \frac{w_{sat} - w_{dry}}{\rho_{fl}} \]

\(\varepsilon \) ... porosity
\(V_b \) ... bulk volume
\(V_p \) ... pore volume
\(w_{sat} \) ... saturated weight
\(w_{dry} \) ... dry weight
\(w_{im} \) ... immersed weight
\(\rho_{liq} \) ... fluid density

Challenges
- Trapped air
- Saturated measurement
- Water absorption
- Buoyancy

3 measurements:
- Dry
- Saturated
- Immersed
Volumetric Approach - Pycnometer

\[V_s = V_c \frac{V_r}{1 - \frac{P_1}{P_2}} \]

- \(V_s \) ... sample volume
- \(V_c \) ... empty chamber volume
- \(V_r \) ... reference chamber volume
- \(P_1 \) ... initial pressure
- \(P_2 \) ... final pressure

- Based on Boyle’s law
 - Independent bulk volume measurement required
 - Simple principle
 - Accurate volume measurement
 - No swelling
Porosimetry

\[D = \frac{-4\gamma \cos\theta}{P} \]

- \(D \) ... pore diameter
- \(\gamma \) ... surface tension
- \(\theta \) ... contact angle
- \(P \) ... pressure

- Requires non-wetting liquid
- Mercury toxicity
- Pore shape assumption
- Cumulative pore volume also give the porosity
Structure Analysis Bases Approaches

2D (microscopy) or 3D (tomography) images used to measure the porosity and pore size

• 2D methods (challenges)
 • pore infiltration
 • serial sectioning
 • 3 orientations

• 3D methods (challenges)
 • Cost, time
 • Resolution
 • Automatic image analysis

\[
\varepsilon = \frac{P}{P_0} = \frac{L}{L_0} = \frac{A}{A_0} = \frac{V}{V_0}
\]

Figure 1. Schematic illustrations with corresponding calculations for area-, line- and point fraction for (a), (b) and (c) respectively showing only a slight variation between the different methods.
Round Robin’s and Control Samples

• Think of effective ways to conduct round robin tests?
• How would control sample look like?
• How would controls be manufactured?
• Use of challenge samples
Literature

