Anisotropic Diffusivity Measured with Fluorescence Recovery after Photobleaching (FRAP)

R. Glenn Hepfer, Peng Cheng, Brooke J. Damon, and Hai Yao, Ph.D.

Clemson-MUSC Joint Bioengineering Program
Department of Bioengineering, Clemson University

Workshop on Characterization of Fiber-based Scaffolds
Manchester, NH
August 10, 2018
Clemson-MUSC Joint Bioengineering Program

Bioengineering Building

Drug Discovery Building

James E. Clyburn Research Center

BioE Labs

BioE Classrooms
Diffusion in Biological Systems

Cell (1)
- Control
- Treatment

Cartilaginous Tissue (3)

MR-Based Diffusion Techniques (2)

Cell death caused by injection of autologous cells due to limited nutrient supplies

(Wu and Yao, 2013)
FRAP in 2D by Confocal Microscopy

(Lippincott-Schwartz et al., 2003)
Isotropic vs. Anisotropic Diffusion

A. Most FRAP studies assume diffusion is isotropic

B. The solute diffusion could be anisotropic in many biological systems

Diffusion Coefficient: D

Diffusion Tensor: $\begin{bmatrix}
D_{xx} & D_{xy} & D_{xz} \\
D_{xy} & D_{yy} & D_{yz} \\
D_{xz} & D_{yz} & D_{zz}
\end{bmatrix}$

(Shi & Yao 2010)
Anisotropic and Inhomogeneous Diffusion in TMJ Disc (2D FRAP)

(Shi & Yao, 2013)
3D Diffusion Measurements in ECMs (3D FRAP)

Results of 3D diffusion tensors of FITC-Dextran (70KDa and 150KDa) in the porcine ligament tissues

(Shi & Yao, 2014)
Anisotropic Diffusion in Electrospun Gelatin Scaffolds

Solute: 10K FD, 20K FD (fluorescein dextran)
Diffusion Measurements: Diffusion Cell Method

Diffusivities of glucose and lactate in cartilage endplate of spine disc. (Wu & Yao, 2016)

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Classic diffusion experiment</td>
<td>• 1D measurement</td>
</tr>
<tr>
<td>• Apply mechanical strain</td>
<td>• Time-consuming</td>
</tr>
<tr>
<td></td>
<td>• Effective diffusivity at tissue level</td>
</tr>
</tbody>
</table>
Electrical Conductivity Method: Ion Diffusion

Ion (Na+, Cl-) diffusivities in human temporomandibular joint disc (male vs. female). *(Wright and Yao, 2013)*

Strengths
- Simple and fast measurement
- Repeatable measurement
- Apply mechanical strain
- Measure ECM fixed charge density

Limitations
- 1D measurement
- Tissue level
- Small ions
Inhomogeneous and Anisotropic Conductivity

(Jackson, Yao, & Gu, 2006)
Fixed Charge Density in Human TMJ Disc

(Coombs & Yao, 2017)
Permeability vs. Porosity in Hydrogel and Cartilage

Variation of Darcy permeability (K) with water volume fraction (ϕ^w)

$$K = a \left(\frac{\phi^w}{\phi^s} \right)^n$$

$\alpha = 0.00339 \text{ nm}^2$

$n = 3.236$

$R^2 = 0.9995$

(Yao & Gu, 2003)
Permeability vs. Porosity in AF with Trypsin Treatment

Open-circuit permeability of porcine annulus fibrosus (AF)

- Control (n=16)
- Trypsin treated (n=8)

Curve-fitting (95% confidence level)

\[K = a \left(\frac{\phi_w}{\phi_s} \right)^n \]

- \(a = 0.00044 \pm 0.00047 \)
- \(n = 7.193 \pm 0.732 \)
- \(R^2 = 0.92 \)

(Gu & Yao, 2003)
Acknowledgement and Contact Information

NIH Funding
P20GM121342, R01DE021134, R01AR05577, R03RDE018741, T32 DE017551
K99 DE023123, F32DE027864, F31DE023482, F31DE020230

Contact Information

Hai Yao, Ph.D.
Professor and Ernest R. Norville Endowed Chair
Director, NIH Center for Biomedical Research Excellence:
Translational Research Improving Musculoskeletal Health

Clemson-MUSC Joint Bioengineering Program
Department of Bioengineering, Clemson University
Department of Orthopaedics, Medical University of South Carolina
Email: haiyao@clemson.edu
Phone: 843-876-2380