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ABSTRACT

We present results from the application of two conformational searching methods� genetic
algorithms 
GA� and direct search methods for �nding low energy conformations of organic
molecules� GAs are in a class of biologically motivated optimization methods that evolve a
population of individuals where individuals who are more ��t� have a higher probability of
surviving into subsequent generations� The parallel direct search method 
PDS� is a type
of pattern search method that uses an adaptive grid to search for minima� Both methods
found energies equal to or lower than the energy of the relaxed crystal structure in all cases�
at a relatively small cost in CPU time� We suggest that either method would be a good
candidate to �nd ��D conformations in a large scale screening application�
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�� Introduction

An important goal of computational chemistry research is the design of molecules for speci�c

applications� Factors that have to be taken into account include shape� size� electronic

properties� and reactivity� For many physical and biological properties� the molecular shape

largely determines the �nal function� and this is the rationale for the development of a large

number of conformation search methods� The basic approach is to search the conformation

space of a molecule in order to �nd energetically accessible regions� The problem can be

broken into two major parts� de�ning the energy function� and �nding e�cient methods

for performing the conformational search� In this paper we compare the e�ciency of two

conformation search methods� the genetic algorithm 
GA� and parallel direct search 
PDS�

for performing conformation searches of small to moderately large molecules�

In general� one can decompose the search into two phases� In the �rst phase� we are

interested in getting the lay of the land� by performing a coarse but broad search� This

stage generates a number of interesting conformations that can be used as starting guesses

for the second phase� which is local energy minimization� The global search phase is con�

ceptually the harder of the two because the size of the space is so large� Additionally� local

information about the surface rarely provides de�nitive clues regarding the location of the

global minimum� Because it is di�cult to exhaustively search the conformation space of

any but the smallest molecules� a number of statistical heuristic methods have been devel�

oped ��� ��� These include pure random search� simulated annealing ���� Cartesian coordinate

directed tweak ���� taboo search ���� parallel stochastic methods as in �
� �� and genetic al�

gorithms ��� ��� Direct search methods have also been reported ��	� ��� ���� Non�stochastic

methods have been developed� including Scheraga�s di�usion method ����� and a class of

branch�and�bound methods due to Floudas ����� All of these methods can be made to work

well on a selected set of molecules� but it is important to perform head�to�head tests between

di�erent methods to assess their relative strengths�

We are primarily concerned here with the e�cient broad search of conformation space

to generate a set of low energy conformations that can be subjected to local gradient mini�
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mization� To this end� we present a comparison of the GA and PDS methods� GAs draw on

a set of evolutionary metaphors including selection of �t individuals� mutation� and genetic

crossover� PDS methods belong to a class of optimization algorithms developed by Dennis

and Torczon ���� that can be viewed as multidirectional line search methods� These meth�

ods are robust� simple to implement� and easily parallelized� Our test problems have been

gathered from a large standard suite of molecules that are being used to compare other con�

formational analysis methods ��� ���� In particular� we are interested in the e�ciency of both

of these methods as the size of the molecules increases� The energies we compare against

are those of the known crystal structures after they have been relaxed using a molecular me�

chanics force �eld� A related issue addressed in this paper is the prediction of the minimum

amount of computer time 
measured in number of energy function evaluations� that is nec�

essary to reliably generate a set of starting points that will yield low energy conformations

after gradient minimization�

The paper is organized as follows� Section � gives an outline of the GA and PDS algo�

rithms� In Section � we describe the test problems and give numerical results� Section �

follows with an analysis of the results�

�� Computational Methods

���� Genetic Algorithms

We present here a brief introduction to our variant of the standard GA method ��
�� The

most important idea is that we work with a population of �individuals� that will interact

through genetic operators to carry out an optimization process� An individual is speci�ed

by a chromosome that is a bit string of length Nc that can be decoded to give a set of

physical parameters� In what follows� chromosome and bit string are synonymous� A �tness

function� that is the function to be optimized� is used to rank the individual chromosomes�

Optimization proceeds by generating populations whose individuals have increasingly higher

�tness� An initial population of Npop individuals is formed by choosing Npop bit strings at
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random� and evaluating each individual�s �tness�

Subsequent generations are formed as follows� All parents are ranked by �tness and the

highest �tness individual is placed directly into the next generation with no change� This

is referred to as �elitism�� Next� the breeding population is formed� consisting of the top

ranked �	� of the population� Pairs of individuals 
including the highest �tness individuals�

are randomly chosen out of the breeding pool� and their chromosomes are crossed over to

form chromosomes for enough individuals to �ll the new population� Crossover consists of

taking some subset of the bits from parent � and the complimentary set of bits from parent

� and combining them to form the chromosome of child �� The remaining bits from the two

parents are combined to form the chromosome of child �� Additionally� during replication

there is a small probability of a bit �ip or mutation in a chromosome� This serves primarily

to maintain diversity and prevent premature convergence that occurs when a single very �t

individual takes over the entire population early in the evolutionary process� To bound the

magnitude of the e�ect of mutations� the binary chromosomes are Gray coded� An integer

that is represented as a Gray coded binary number has the property that most single bit

�ips change the value of the integer by ���

Our GA code is implemented as a module of CCEMD ���� a general purpose molecular

dynamics code that uses the QUANTA�CHARMm ���� ��� force �eld� The three principal

operators are selection of parents� mutation� and crossover� Boxcar selection is used� in

which every individual in the top�ranked �	� of the population has an equal chance of

being selected for mating� The �tness is the negative of the potential energy� The crossover

operator takes pairs of parents and joins each of their binary chromosomes end�to�end to

form two rings� It then chooses two symmetric points to cut the rings and forms a pair of

children by swapping pieces of the parents� chromosomes� Finally the mutation operator acts

by �ipping bits in the binary chromosome� Each bit has a probability equal to Rm of being

�ipped from � to 	 or vice versa� Mutation rates are typically quite low� on the order of

	�	�� An important detail is that the entire population is not regenerated at each generation�

The top �	� of the old population is moved into the new population and all but the single
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best are subjected to the mutation operator� We always use the �elitist� strategy in which

the most �t individual in each generation is passed directly to the next without crossover or

mutation� This ensures that the best individual is never lost� but continues to be available

for mating� Note that this individual is transferred directly from generation i to i � � but

also produces o�spring that make up part of generation i� ��

We have the ability to run multiple sub�populations simultaneously� At periodic intervals�

these populations can communicate by passing the best individual from each population to

each of the others�

During the crossover operations� a niching operation is used� As prospective new members

of the population are created� they are compared to those already accepted� by measuring

the Hamming distance� The Hamming distance is the fraction of bit positions that have

di�erent values in the two chromosomes� The prospective new member is rejected if it is

too similar to ones already present� Initially� an individual must di�er by �	� from every

other individual 
i�e� no more than 
	� of the bits in the two can by set the same�� As

the population �lls up� this criteria becomes too restrictive and it is slowly relaxed until the

population is �lled�

���� Direct Search Methods

Direct search methods belong to a class of optimization methods that do not compute deriva�

tives� Examples of direct search methods are the Nelder�Mead Simplex method ��	�� Hooke

and Jeeves� pattern search ����� the box method ����� and Dennis and Torczon�s parallel

direct search algorithm 
PDS� ����� The PDS algorithm can be viewed as an intelligent

adaptive grid search algorithm employing a multi�sided simplex�

Starting from an initial simplex So� the function value at each of the vertices in So is

computed and the vertex corresponding to the lowest function value� vo� is determined� Using

the underlying grid structure� the simplex So is rotated ��	
� about vo and the function values

at the vertices of this rotation simplex� Sr� are compared against vo� If one of the vertices in

the simplex Sr has a function value less than the function value corresponding to vo� then an
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expansion step to form a new simplex� Se� is attempted in which the size of Sr is expanded

by some multiple� usually �� The function values at the vertices of Se are compared against

the lowest function value found in Sr� If a lower function value is encountered� then Se is

accepted as the starting simplex for the next iteration� otherwise Sr is accepted for the next

iteration� If no function value lower than the one corresponding to vo is found in Sr� then a

contraction simplex is created by reducing the size of So by some multiple� usually ���� and

is accepted for the next iteration�

Because PDS only uses function comparisons� it is easy to implement and use� Since the

rotation� expansion� and contraction steps are all well�determined it is possible to determine

ahead of time a set of grid points corresponding to the vertices of the simplices constructed

from various combinations of rotations� expansions� and contractions� Given this set of grid

points� called a search scheme� the PDS algorithm can compute the function values at all of

these vertices in parallel and take the vertex corresponding to the lowest function value� An

interesting consequence of this approach is that the PDS algorithm can jump out of local

wells by using a large enough search scheme size� By varying the size of the search scheme

one can therefore use the PDS algorithm as a means of e�ciently generating conformations

in a manner similar to GA and simulated annealing�

It is also worthwhile to contrast PDS with grid search methods� In a grid search method

the grids are generated by starting with a �xed molecule and systematically varying one of the

internal variables� This method works well for small molecules but becomes computationally

prohibitive for larger molecules� The grid in PDS however is adaptive and will automatically

change in response to the contours of the energy surface� The PDS code we used is a

modi�cation of that developed by Torczon and obtained from the Center for Research on

Parallel Computation at Rice University 
available via email from softlib�cs�rice�edu��
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�� Numerical Results

���� Test Problems

In two earlier studies ��� ���� both GAs and simulated annealing outperformed random search

for large molecules� Additionally� GA has been shown to outperform simulated annealing

in several conformation search applications ��� ��� ��� �
� ���� GA has been compared

against the CSEARCH method ���� and was shown to be more e�cient for problems with

more than about � rotatable bonds� Clark� et al� ���� have compared GA with several other

methods and found it superior to all but a directed tweak method ����� to which it performed

in a comparable manner� In this section we present the results of numerical experiments

comparing PDS with GA�

We tested the two methods on �� di�erent molecules� The �rst �	 are taken from a

standard set ��	� of �� molecules chosen from the Cambridge Structural Database 
CSD� �����

These range in size from � to �� dihedrals� The structures of the complete set can be found

in references ���� and ��	�� A set of � intermediate size molecules 
����� dihedrals� was

added to the original set� These were also taken from the Cambridge database� Their

structures are given in Figures � and �� Finally two peptides were added to the set� These

are inhibitors of the S�protein ���� and have sequences CH�CO�Tyr�Asn�Phe�Glu�Val�Leu�

NHCH� 
denoted sprot with �� dihedrals� and CH�CO�Tyr�Asn�Phe�Glu�Val�Leu�Gly�Lys


denoted sprotbpcap�� with �� dihedrals��

For all but the two peptides� we relaxed the crystal structures using CCEMD and the

CHARMm force �eld with in�nite cuto�s� standard charges provided by QUANTA ����� and

no dielectric screening� This provided the reference energy which was the target for the

optimization methods� The minimized crystal structure was used as the template for the

GA� The GA completely randomizes the initial set of dihedrals� so it is not biased towards

the reference� Only non�ring dihedrals were varied� so that all rings assumed their relaxed

crystal conformations�

To obtain a reference energy for the peptides sprot and sprotbpcap�� extended structures






were built in QUANTA� and � nsec dynamics trajectories were run� The force �eld was

the same as used for the other molecules except for the addition of a continuum solvent

term� CCEMD uses a variant on the continuum model of Still� et al� ����� A number of

snapshots were taken along the trajectory and minimized� The lowest energy conformation

found became the reference energy�

���� GA Parameters

The important variables in the GA method are the population size� the total number of

evaluations allowed� the number of bits used to represent a real variable� and the mutation

rate� The populations and number of generations were chosen as follows� Four runs were

performed for each of the two conformation search methods� These runs used a total of

�			� �			� �				� and �				 potential energy evaluations respectively� For the runs with

a total of �			 function evaluations� the population size was �	 and �	 generations were

run� For the �			 function evaluation case� the population size was �		 and �	 generations

were run� For the �				 function evaluation case� two parameters sets were used� First�

one sub�population was run with size �		 for �		 generations� Then a � sub�population run

was performed with populations of �	 that were run for �	 generations� The populations

interacted at generations �	 and �	� The rationale behind trying two sets of this size is to

test the notion that isolating the sub�populations will slow convergence� and allow a wider

search� For the �				 function evaluation case� � sub�populations were used� each of size �		�

run for �		 generations� They interacted at generations �	� �	� 
	� and �	� We used �	 bits

to represent each angle� which is equivalent to torsion angle resolution of about 	����� The

mutation rate we used is Rm � 	�	�� At the end of the search phase for each run� all of the

conformations found were clustered� so that any pair of conformations within �	� torsional

rms of one another were in the same cluster� Then the lowest energy conformation in each

cluster� as well as the overall lowest energy �	 conformations were gradient minimized�
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���� PDS Parameters

The important parameters for the PDS algorithm are the stopping tolerance and the size

of the search scheme� The stopping tolerance we used was quite large because we are not

interested in �nding a local minimum but instead in searching conformational space� We ran

� di�erent sets of experiments� as in the GA runs� each one with a di�erent maximum on the

number of function evaluations allowed� Since each PDS run requires very few function eval�

uations� we ran multiple PDS runs starting from di�erent conformations until the maximum

number of function evaluations was exceeded� The �	 best conformations 
as determined by

the potential energy� from this stage were then given to a local minimization routine that

computed the �nal energy�

We also wanted to explore the e�ect of two di�erent search scheme sizes for PDS� For

the large molecule cases� we ran two di�erent sets of PDS runs� with the search scheme size

set to � �Ndih and � �Ndih� The major di�erence between the two runs was that more PDS

runs were completed with the smaller search scheme size� In almost all cases the smaller

scheme size generated lower �nal energies than the larger scheme size� The one test problem

in which this was not true was the buftif molecule for which the larger scheme size predicted

a substantially lower energy�

���� Comparison of Results

Tables ��� contain the GA and PDS minimized energies for all of the test problems� For each

molecule� we give the name� the number of dihedrals� the reference energy� and the results

from the GA and PDS runs for the � basic runs� This column gives the lowest energy found

after the search and gradient minimization phases� For ease of comparison� only one of the

�				 function evaluation GA runs is included� that being the case of � sub�population�

Figure � shows the di�erence in energy between the reference value and the lowest energy

found by each method for the case where the maximum number of function evaluations was

set to �			� The �gure clearly indicates that even for the least expensive case� both GA and

PDS can quickly achieve conformations that are close to the reference energy� In Figure �

�



we present the same results for the lowest energy conformation over all of the numerical

experiments� This �gure indicates that GA and PDS perform almost identically over the

entire set of test problems� Both methods yield conformations that have energies below the

reference energy�

Table � gives a comparison between the results of the two search approaches used in

the GA for the �				 function evaluation case� The results for � sub�population of �		

individuals� run for �		 generations is given in column GA�� The results for the run with �

sub�populations of �	 individuals and �	 generations is given in column GA�� If one method

outperformed the other by more than � kcal�mol� it is indicated by a star� For the small

half of the molecules� neither method outperformed the other� while for the larger half of

the molecules� the two methods found di�erent best local minima� but with roughly equal

probabilities of �nding the lower energy� From this test� at least� no preference can be given

to one approach or the other�

Another question of interest was what e�ect the search scheme size 
SSS� parameter for

PDS would have on the conformational search� Since the SSS parameter directly a�ects the

size of the grid on which PDS searches for minima� the larger this parameter is the greater

the probability of stepping out of a local minimum well� However� larger values of the SSS

parameter also result in fewer starting points being considered� In Table � we present the

results of running two PDS searches with SSS equal to � �Ndih and � �Ndih� for the largest

� molecules� The results indicate that for � out of the � molecules a larger value of SSS did

not improve the best energy found� The one exception was the buftif molecule for which

PDS not only found a conformation with a substantially lower energy than with the smaller

SSS� but it was also the lowest energy found by either method�

�� Conclusions

The numerical results show that both methods work well even as the size of the molecule

increases� For the small molecule cases� PDS seems to work better than the GA� although

the di�erences are small� For the medium molecule cases� GA quickly �nds low energy con�
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formations as evidenced by the results for the �			 function evaluation computer runs� The

best energy found however was usually from PDS with the single exception being molecule

��� bulceq��

The case for the larger molecules is slightly more interesting� Both methods always found

conformations with energies lower than the reference energies� In the large�molecule cases�

GA found a lower energy in � out of the � test problems� However� in all cases there was

never more than a 
 kcal�mol di�erence between the two methods�

As we increase the number of function evaluations allowed� PDS generally tends to �nd

lower energy conformations� but this is not always true� For the GA method� this is even

less often the case� It is important to note that the di�erent runs used di�erent initial

conformations so that the �			 function evaluation run was not simply a continuation of the

�			 function evaluation run� If the longer runs were just a continuation� then both methods

are guaranteed to get successively better results as more function evaluations are used� What

this points out is the sensitivity to initial conditions in these and other conformation search

methods that have a stochastic component� Although we did not do this test� the numerical

results suggest that a GA run using �	 totally independent runs of �			 evaluations will

do better than a single �				 function evaluation run� From a given starting population�

the GA method relatively quickly exhausts its ability to search globally� and instead starts

concentrating on small� but promising local regions�

These results suggest that both the GA and PDS methods would be good candidates

for use in a screening application� In that case� it is important to quickly generate one

or a few low energy conformations for a large 
� �			� set of molecules� For the set of

molecules considered here with up to � dihedrals� the lowest energy found by any method was

achieved within �			 function evaluations� With our current code� running on an SGI Power

Challenge� �			 function evaluations takes on the order of � cpu minute for a typical molecule�

For the largest molecule considered here� sprotbpcap�� the �				 function evaluation run took

about � cpu hour� which includes extra overhead to calculate the continuum solvation term�
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Table �� Summary of Results� small molecules�
No� Molecule Ndih Reference FCN evals GA PDS
� abaxes � 	�� �			 	�� 	��

�			 	�� 	��
�				 	�� 	��
�				 	�� 	��

� acfpch � ��� �			 ��� ���
�			 ��� ���
�				 ��� ���
�				 ��� ���

� abinor� � ���	 �			 ��� 
��
�			 ��� ���
�				 ��� ���
�				 ��� ���

� acdxur � ���� �			 ���� ����
�			 �
�	 �
��
�				 �
�� �
��
�				 �
�	 �
��

� abtoet 
 ���� �			 ���� ����
�			 ���� ����
�				 ���� ����
�				 ���� ����


 acthbz 
 ���� �			 ��� ���
�			 ��� ���
�				 ��� ���
�				 ��� ���

� acarap � ����� �			 ����� �����
�			 ����� �����
�				 ����� �����
�				 ����� �����

��



Table �� Summary of Results� medium molecules�
No� Molecule Ndih Reference FCN evals GA PDS
� aaxthp �	 ����� �			 ��	��� ��		��

�			 ��	��� ��	���
�				 ��	��
 ��	���
�				 ��	��
 ��	���

� acinst �	 ����� �			 ��	�� ��	��
�			 ����� �����
�				 ����� ��	��
�				 ����� ��	��

�	 acbuol �� ��	�� �			 ����� �����
�			 ����� �����
�				 ����� ��
�

�				 ����� �����

�� cazkuj �� ���� �			 ���� ����
�			 ���� ����
�				 �	�� ����
�				 �	�� ����

�� cacsii �� �
��� �			 �
��� �����
�			 �
��� �
��	
�				 �
��� �
���
�				 �

�� �
���

�� bettez �
 ����� �			 ����� ����	
�			 ����
 ����	
�				 ����� ����	
�				 ����� ����	

�� bulceq� �� ����� �			 ����� �����
�			 ����
 �����
�				 ����� �����
�				 ����
 ��
��

�� bagzue� �� ���	 �			 ���� ���	
�			 ���� ����
�				 ���� ���	
�				 ���	 ����

��



Table �� Summary of Results� large molecules�
No� Molecule Ndih Reference FCN evals GA PDS
�
 bedgew �� ����� �			 ����� �����

�			 ����	 �����
�				 ����� ����	
�				 ����� �����

�� buftif �� ��	��� �			 ������ ������
�			 ��	
�� ������
�				 ������ ������
�				 ��	��� �����	

�� sprot �� �����	 �			 ������ ������
�			 ��
��	 ������
�				 ������ ������
�				 ��
	�� ������

�� sprotbpcap� �� �����	 �			 ��
��� �����

�			 ������ ������
�				 ������ ������
�				 ��

�� ��
���

�




Table �� E�ect of the number of niches on �nal energy� �				 functions� A � indicates which�
if either� of the two runs found an energy at least � kcal�mol lower than the other�

No� Molecule Ndih Reference GA� GA�
� abaxes � 	�� 	�� 	��
� acfpch � ��� ��� ���
� abinor� � ���	 ��� ���
� acdxur � ���� �
�� �
�	
� abtoet 
 ���� ���� ����

 acthbz 
 ���� ��� ���
� acarap � ����� ����� ������
� aaxthp �	 ����� ��	��
 ��	��

� acinst �	 ����� ����� �����
�	 acbuol �� ��	�� ����� �����
�� cazkuj �� ���� �	�� �����
�� cacsii �� �
��� �
��� �

���
�� bettez �
 ����� ������ �����
�� bulceq� �� ����� ����� �����
�� bagzue� �� ���	 ���� �����
�
 bedgew �� ����� ������ �����
�� buftif �� ��	��� ������� ������
�� sprot �� �����	 ������ �������
�� sprotbpcap� �� �����	 ������� �����


��



Table �� E�ect of search scheme size 
SSS� on �nal energy� large molecules�
No� Molecule Ndih Reference FCN evals SSS��N SSS��N
�
 bedgew �� ������ �			 ����� �����

�			 ����� ��	�	
�				 ����	 ��	�	
�				 ����� �����

�� buftif �� ��	��	� �			 ������ �����

�			 ������ ������
�				 ������ ���
��
�				 �����	 ��	���

�� sprot �� �����	 �			 ������ ������
�			 ������ ������
�				 ������ ������
�				 ������ ������

�� sprotbpcap� �� �����	 �			 �����
 ������
�			 ������ ������
�				 ������ ������
�				 ��
��� ������

��
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Figure �� Intermediate and large molecules

��



O

O

O

O

O

NO2

NO2

Br

O

O

O

O
bagzue4

O

O

O

O

O

OH

HO

OH

OH
O

O

O

O

O

OH

HO

OH

OH

bedgew

OO

O

O

O

O

O

O
O

O
O O

O O

O O

O

O

O

O

O OO
O

buftif

Figure �� Continuation

�	



1 3 5 7 9 11 13 15 17 19
Molecule Number

−25.0

−20.0

−15.0

−10.0

−5.0

0.0

5.0

10.0

15.0

20.0

25.0

E
ne

rg
y 

D
iff

er
en

ce
 (

kc
al

/m
ol

e)

GA
PDS

Figure �� Energy di�erence between the reference value and the lowest energy found after
�			 function evaluations� The molecule number refers to that given in Table ��
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Figure �� Energy di�erence from reference energy for best conformation found from any of
the runs�
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