A Comparison of a Direct Search Method and a Genetic Algorithm for
Conformational Searching

J. C. Meza!, R.S. Judson?
Scientific Computing Department, MS 9214
Sandia National Laboratories
Livermore, CA 94551-0969

T.R. Faulkner
Scalable Systems Division
Intel Corporation

A.M. Treasurywala
Allelix Biopharmaceuticals
6850 Goreway Dr.
Mississaugoa, Ontario L4V 1P1

ABSTRACT

We present results from the application of two conformational searching methods: genetic
algorithms (GA) and direct search methods for finding low energy conformations of organic
molecules. GAs are in a class of biologically motivated optimization methods that evolve a
population of individuals where individuals who are more “fit” have a higher probability of
surviving into subsequent generations. The parallel direct search method (PDS) is a type
of pattern search method that uses an adaptive grid to search for minima. Both methods
found energies equal to or lower than the energy of the relaxed crystal structure in all cases,
at a relatively small cost in CPU time. We suggest that either method would be a good
candidate to find 3-D conformations in a large scale screening application.
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1. Introduction

An important goal of computational chemistry research is the design of molecules for specific
applications. Factors that have to be taken into account include shape, size, electronic
properties, and reactivity. For many physical and biological properties, the molecular shape
largely determines the final function, and this is the rationale for the development of a large
number of conformation search methods. The basic approach is to search the conformation
space of a molecule in order to find energetically accessible regions. The problem can be
broken into two major parts: defining the energy function, and finding efficient methods
for performing the conformational search. In this paper we compare the efficiency of two
conformation search methods, the genetic algorithm (GA) and parallel direct search (PDS)
for performing conformation searches of small to moderately large molecules.

In general, one can decompose the search into two phases. In the first phase, we are
interested in getting the lay of the land, by performing a coarse but broad search. This
stage generates a number of interesting conformations that can be used as starting guesses
for the second phase, which is local energy minimization. The global search phase is con-
ceptually the harder of the two because the size of the space is so large. Additionally, local
information about the surface rarely provides definitive clues regarding the location of the
global minimum. Because it is difficult to exhaustively search the conformation space of
any but the smallest molecules, a number of statistical heuristic methods have been devel-
oped [1, 2]. These include pure random search, simulated annealing [3], Cartesian coordinate
directed tweak [4], taboo search [5], parallel stochastic methods as in [6, 7] and genetic al-
gorithms [8, 9]. Direct search methods have also been reported [10, 11, 12]. Non-stochastic
methods have been developed, including Scheraga’s diffusion method [13], and a class of
branch-and-bound methods due to Floudas [14]. All of these methods can be made to work
well on a selected set of molecules, but it is important to perform head-to-head tests between
different methods to assess their relative strengths.

We are primarily concerned here with the efficient broad search of conformation space

to generate a set of low energy conformations that can be subjected to local gradient mini-



mization. To this end, we present a comparison of the GA and PDS methods. GAs draw on
a set of evolutionary metaphors including selection of fit individuals, mutation, and genetic
crossover. PDS methods belong to a class of optimization algorithms developed by Dennis
and Torczon [23] that can be viewed as multidirectional line search methods. These meth-
ods are robust, simple to implement, and easily parallelized. Our test problems have been
gathered from a large standard suite of molecules that are being used to compare other con-
formational analysis methods [9, 15]. In particular, we are interested in the efficiency of both
of these methods as the size of the molecules increases. The energies we compare against
are those of the known crystal structures after they have been relaxed using a molecular me-
chanics force field. A related issue addressed in this paper is the prediction of the minimum
amount of computer time (measured in number of energy function evaluations) that is nec-
essary to reliably generate a set of starting points that will yield low energy conformations
after gradient minimization.

The paper is organized as follows. Section 2 gives an outline of the GA and PDS algo-
rithms. In Section 3 we describe the test problems and give numerical results. Section 4

follows with an analysis of the results.

2. Computational Methods

2.1. Genetic Algorithms

We present here a brief introduction to our variant of the standard GA method [16]. The
most important idea is that we work with a population of “individuals” that will interact
through genetic operators to carry out an optimization process. An individual is specified
by a chromosome that is a bit string of length N, that can be decoded to give a set of
physical parameters. In what follows, chromosome and bit string are synonymous. A fitness
function, that is the function to be optimized, is used to rank the individual chromosomes.
Optimization proceeds by generating populations whose individuals have increasingly higher

fitness. An initial population of N,,, individuals is formed by choosing N,,, bit strings at



random, and evaluating each individual’s fitness.

Subsequent generations are formed as follows. All parents are ranked by fitness and the
highest fitness individual is placed directly into the next generation with no change. This
is referred to as “elitism”. Next, the breeding population is formed, consisting of the top
ranked 40% of the population. Pairs of individuals (including the highest fitness individuals)
are randomly chosen out of the breeding pool, and their chromosomes are crossed over to
form chromosomes for enough individuals to fill the new population. Crossover consists of
taking some subset of the bits from parent 1 and the complimentary set of bits from parent
2 and combining them to form the chromosome of child 1. The remaining bits from the two
parents are combined to form the chromosome of child 2. Additionally, during replication
there is a small probability of a bit flip or mutation in a chromosome. This serves primarily
to maintain diversity and prevent premature convergence that occurs when a single very fit
individual takes over the entire population early in the evolutionary process. To bound the
magnitude of the effect of mutations, the binary chromosomes are Gray coded. An integer
that is represented as a Gray coded binary number has the property that most single bit
flips change the value of the integer by +1.

Our GA code is implemented as a module of CCEMD [17] a general purpose molecular
dynamics code that uses the QUANTA/CHARMm [18, 19] force field. The three principal
operators are selection of parents, mutation, and crossover. Boxcar selection is used, in
which every individual in the top-ranked 40% of the population has an equal chance of
being selected for mating. The fitness is the negative of the potential energy. The crossover
operator takes pairs of parents and joins each of their binary chromosomes end-to-end to
form two rings. It then chooses two symmetric points to cut the rings and forms a pair of
children by swapping pieces of the parents’ chromosomes. Finally the mutation operator acts
by flipping bits in the binary chromosome. Each bit has a probability equal to R,, of being
flipped from 1 to 0 or vice versa. Mutation rates are typically quite low, on the order of
0.04. An important detail is that the entire population is not regenerated at each generation.

The top 10% of the old population is moved into the new population and all but the single



best are subjected to the mutation operator. We always use the “elitist” strategy in which
the most fit individual in each generation is passed directly to the next without crossover or
mutation. This ensures that the best individual is never lost, but continues to be available
for mating. Note that this individual is transferred directly from generation ¢ to 7 + 1 but
also produces offspring that make up part of generation 7 + 1.

We have the ability to run multiple sub-populations simultaneously. At periodic intervals,
these populations can communicate by passing the best individual from each population to
each of the others.

During the crossover operations, a niching operation is used. As prospective new members
of the population are created, they are compared to those already accepted, by measuring
the Hamming distance. The Hamming distance is the fraction of bit positions that have
different values in the two chromosomes. The prospective new member is rejected if it is
too similar to ones already present. Initially, an individual must differ by 40% from every
other individual (i.e. no more than 60% of the bits in the two can by set the same.) As
the population fills up, this criteria becomes too restrictive and it is slowly relaxed until the

population is filled.

2.2. Direct Search Methods

Direct search methods belong to a class of optimization methods that do not compute deriva-
tives. Examples of direct search methods are the Nelder-Mead Simplex method [20], Hooke
and Jeeves’ pattern search [21], the box method [22], and Dennis and Torczon’s parallel
direct search algorithm (PDS) [23]. The PDS algorithm can be viewed as an intelligent
adaptive grid search algorithm employing a multi-sided simplex.

Starting from an initial simplex S,, the function value at each of the vertices in S, is
computed and the vertex corresponding to the lowest function value, v,, is determined. Using
the underlying grid structure, the simplex S, is rotated 180° about v, and the function values
at the vertices of this rotation simplex, S,., are compared against v,. If one of the vertices in

the simplex S, has a function value less than the function value corresponding to v,, then an



expansion step to form a new simplex, S, is attempted in which the size of S, is expanded
by some multiple, usually 2. The function values at the vertices of S, are compared against
the lowest function value found in S,. If a lower function value is encountered, then S, is
accepted as the starting simplex for the next iteration; otherwise S, is accepted for the next
iteration. If no function value lower than the one corresponding to v, is found in S,, then a
contraction simplex is created by reducing the size of S, by some multiple, usually 1/2, and
is accepted for the next iteration.

Because PDS only uses function comparisons, it is easy to implement and use. Since the
rotation, expansion, and contraction steps are all well-determined it is possible to determine
ahead of time a set of grid points corresponding to the vertices of the simplices constructed
from various combinations of rotations, expansions, and contractions. Given this set of grid
points, called a search scheme, the PDS algorithm can compute the function values at all of
these vertices in parallel and take the vertex corresponding to the lowest function value. An
interesting consequence of this approach is that the PDS algorithm can jump out of local
wells by using a large enough search scheme size. By varying the size of the search scheme
one can therefore use the PDS algorithm as a means of efficiently generating conformations
in a manner similar to GA and simulated annealing.

It is also worthwhile to contrast PDS with grid search methods. In a grid search method
the grids are generated by starting with a fixed molecule and systematically varying one of the
internal variables. This method works well for small molecules but becomes computationally
prohibitive for larger molecules. The grid in PDS however is adaptive and will automatically
change in response to the contours of the energy surface. The PDS code we used is a
modification of that developed by Torczon and obtained from the Center for Research on

Parallel Computation at Rice University (available via email from softlib@cs.rice.edu).



3. Numerical Results

3.1. Test Problems

In two earlier studies [8, 12], both GAs and simulated annealing outperformed random search
for large molecules. Additionally, GA has been shown to outperform simulated annealing
in several conformation search applications [8, 24, 25, 26, 27]. GA has been compared
against the CSEARCH method [28] and was shown to be more efficient for problems with
more than about 8 rotatable bonds. Clark, et al. [24] have compared GA with several other
methods and found it superior to all but a directed tweak method [29], to which it performed
in a comparable manner. In this section we present the results of numerical experiments
comparing PDS with GA.

We tested the two methods on 19 different molecules. The first 10 are taken from a
standard set [30] of 72 molecules chosen from the Cambridge Structural Database (CSD) [31].
These range in size from 2 to 12 dihedrals. The structures of the complete set can be found
in references [15] and [30]. A set of 7 intermediate size molecules (14-24 dihedrals) was
added to the original set. These were also taken from the Cambridge database. Their
structures are given in Figures 1 and 2. Finally two peptides were added to the set. These
are inhibitors of the S-protein [32] and have sequences CH3CO-Tyr-Asn-Phe-Glu-Val-Leu-
NHCH; (denoted sprot with 32 dihedrals) and CH3CO-Tyr-Asn-Phe-Glu-Val-Leu-Gly-Lys
(denoted sprotbpcapl, with 39 dihedrals).

For all but the two peptides, we relaxed the crystal structures using CCEMD and the
CHARMm force field with infinite cutoffs, standard charges provided by QUANTA [18], and
no dielectric screening. This provided the reference energy which was the target for the
optimization methods. The minimized crystal structure was used as the template for the
GA. The GA completely randomizes the initial set of dihedrals, so it is not biased towards
the reference. Only non-ring dihedrals were varied, so that all rings assumed their relaxed
crystal conformations.

To obtain a reference energy for the peptides sprot and sprotbpcapl, extended structures



were built in QUANTA, and 1 nsec dynamics trajectories were run. The force field was
the same as used for the other molecules except for the addition of a continuum solvent
term. CCEMD uses a variant on the continuum model of Still, et al. [33]. A number of
snapshots were taken along the trajectory and minimized. The lowest energy conformation

found became the reference energy.

3.2. GA Parameters

The important variables in the GA method are the population size, the total number of
evaluations allowed, the number of bits used to represent a real variable, and the mutation
rate. The populations and number of generations were chosen as follows. Four runs were
performed for each of the two conformation search methods. These runs used a total of
1000, 5000, 10000, and 40000 potential energy evaluations respectively. For the runs with
a total of 1000 function evaluations, the population size was 50 and 20 generations were
run. For the 5000 function evaluation case, the population size was 100 and 50 generations
were run. For the 10000 function evaluation case, two parameters sets were used. First,
one sub-population was run with size 100 for 100 generations. Then a 4 sub-population run
was performed with populations of 50 that were run for 50 generations. The populations
interacted at generations 20 and 40. The rationale behind trying two sets of this size is to
test the notion that isolating the sub-populations will slow convergence, and allow a wider
search. For the 40000 function evaluation case, 4 sub-populations were used, each of size 100,
run for 100 generations. They interacted at generations 20, 40, 60, and 80. We used 10 bits
to represent each angle, which is equivalent to torsion angle resolution of about 0.35°. The
mutation rate we used is R, = 0.04. At the end of the search phase for each run, all of the
conformations found were clustered, so that any pair of conformations within 40° torsional
rms of one another were in the same cluster. Then the lowest energy conformation in each

cluster, as well as the overall lowest energy 10 conformations were gradient minimized.



3.3. PDS Parameters

The important parameters for the PDS algorithm are the stopping tolerance and the size
of the search scheme. The stopping tolerance we used was quite large because we are not
interested in finding a local minimum but instead in searching conformational space. We ran
4 different sets of experiments, as in the GA runs, each one with a different maximum on the
number of function evaluations allowed. Since each PDS run requires very few function eval-
uations, we ran multiple PDS runs starting from different conformations until the maximum
number of function evaluations was exceeded. The 20 best conformations (as determined by
the potential energy) from this stage were then given to a local minimization routine that
computed the final energy.

We also wanted to explore the effect of two different search scheme sizes for PDS. For
the large molecule cases, we ran two different sets of PDS runs, with the search scheme size
set to 2 % Ngp, and 4 x Ny;,. The major difference between the two runs was that more PDS
runs were completed with the smaller search scheme size. In almost all cases the smaller
scheme size generated lower final energies than the larger scheme size. The one test problem
in which this was not true was the bu fti f molecule for which the larger scheme size predicted

a substantially lower energy.

3.4. Comparison of Results

Tables 1-3 contain the GA and PDS minimized energies for all of the test problems. For each
molecule, we give the name, the number of dihedrals, the reference energy, and the results
from the GA and PDS runs for the 4 basic runs. This column gives the lowest energy found
after the search and gradient minimization phases. For ease of comparison, only one of the
10000 function evaluation GA runs is included, that being the case of 1 sub-population.
Figure 3 shows the difference in energy between the reference value and the lowest energy
found by each method for the case where the maximum number of function evaluations was
set to 1000. The figure clearly indicates that even for the least expensive case, both GA and

PDS can quickly achieve conformations that are close to the reference energy. In Figure 4



we present the same results for the lowest energy conformation over all of the numerical
experiments. This figure indicates that GA and PDS perform almost identically over the
entire set of test problems. Both methods yield conformations that have energies below the
reference energy.

Table 4 gives a comparison between the results of the two search approaches used in
the GA for the 10000 function evaluation case. The results for 1 sub-population of 100
individuals, run for 100 generations is given in column GA1. The results for the run with 4
sub-populations of 50 individuals and 50 generations is given in column GA2. If one method
outperformed the other by more than 1 kcal/mol, it is indicated by a star. For the small
half of the molecules, neither method outperformed the other, while for the larger half of
the molecules, the two methods found different best local minima, but with roughly equal
probabilities of finding the lower energy. From this test, at least, no preference can be given
to one approach or the other.

Another question of interest was what effect the search scheme size (SSS) parameter for
PDS would have on the conformational search. Since the SSS parameter directly affects the
size of the grid on which PDS searches for minima, the larger this parameter is the greater
the probability of stepping out of a local minimum well. However, larger values of the SSS
parameter also result in fewer starting points being considered. In Table 5 we present the
results of running two PDS searches with SSS equal to 2 x Ny, and 4 * Ny, for the largest
4 molecules. The results indicate that for 3 out of the 4 molecules a larger value of SSS did
not improve the best energy found. The one exception was the buftif molecule for which
PDS not only found a conformation with a substantially lower energy than with the smaller

SSS, but it was also the lowest energy found by either method.

4. Conclusions

The numerical results show that both methods work well even as the size of the molecule
increases. For the small molecule cases, PDS seems to work better than the GA, although

the differences are small. For the medium molecule cases, GA quickly finds low energy con-



formations as evidenced by the results for the 1000 function evaluation computer runs. The
best energy found however was usually from PDS with the single exception being molecule
14, bulceq?.

The case for the larger molecules is slightly more interesting. Both methods always found
conformations with energies lower than the reference energies. In the large-molecule cases,
GA found a lower energy in 3 out of the 4 test problems. However, in all cases there was
never more than a 6 kcal/mol difference between the two methods.

As we increase the number of function evaluations allowed, PDS generally tends to find
lower energy conformations, but this is not always true. For the GA method, this is even
less often the case. It is important to note that the different runs used different initial
conformations so that the 5000 function evaluation run was not simply a continuation of the
1000 function evaluation run. If the longer runs were just a continuation, then both methods
are guaranteed to get successively better results as more function evaluations are used. What
this points out is the sensitivity to initial conditions in these and other conformation search
methods that have a stochastic component. Although we did not do this test, the numerical
results suggest that a GA run using 40 totally independent runs of 1000 evaluations will
do better than a single 40000 function evaluation run. From a given starting population,
the GA method relatively quickly exhausts its ability to search globally, and instead starts
concentrating on small, but promising local regions.

These results suggest that both the GA and PDS methods would be good candidates
for use in a screening application. In that case, it is important to quickly generate one
or a few low energy conformations for a large (> 1000) set of molecules. For the set of
molecules considered here with up to 8 dihedrals, the lowest energy found by any method was
achieved within 5000 function evaluations. With our current code, running on an SGI Power
Challenge, 5000 function evaluations takes on the order of 1 cpu minute for a typical molecule.
For the largest molecule considered here, sprotbpcapl, the 40000 function evaluation run took

about 1 cpu hour, which includes extra overhead to calculate the continuum solvation term.
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Table 1: Summary of Results: small molecules.

No. | Molecule | Ny, Reference FCN evals GA PDS
1 abaxes 2 0.5 1000 0.5 0.5
5000 0.5 0.5
10000 0.5 0.5
40000 0.5 0.5
2 acfpch 3 2.3 1000 2.3 2.2
5000 2.2 2.2
10000 2.2 2.2
40000 2.3 2.2
3 abinor2 4 15.0 1000 9.2 6.8
5000 9.2 9.2
10000 9.2 9.2
40000 9.2 9.2
4 acdxur 5 -2.7 1000 -5.2 -7.8
5000 -6.0 -6.1
10000 -6.1 -6.1
40000 -6.0 -6.1
5 abtoet 6 21.2 1000 17.5 128
5000 17.5 12.8
10000 175 17.4
40000 17.5 174
6 acthbz 6 11.4 1000 4.5 4.8
5000 4.5 4.4
10000 4.5 4.4
40000 4.5 4.4
7 acarap 8 -95.7 1000 -98.4 -99.9
5000 -98.4 -99.9
10000 -98.4 -99.9
40000 -99.8 -98.4
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Table 2: Summary of Results: medium molecules.

No. | Molecule | Ny, Reference FCN evals GA  PDS
8 aaxthp 10 -97.2 1000 -101.9 -100.1
5000 -102.5 -102.5
10000 -102.6 -102.7
40000 -102.6 -102.7
9 acinst 10 -87.4 1000 -90.7 -80.9
5000 -87.3 -87.4
10000 -87.3  -90.8
40000 -87.4  -90.8
10 | acbuol 12 -10.5 1000 -14.2 -13.4
5000 -15.3 -15.5
10000 -14.4 -16.6
40000 -14.4 -17.5
11 | cazkuj 13 31.1 1000 23.9 14.9
5000 17.3 14.9
10000 20.7 14.9
40000 20.5 21.5
12 cacsii 14 168.8 1000 169.9 171.9
5000 167.9 168.0
10000 167.5 167.1
40000 166.4 164.1
13 | bettez 16 181.7 1000 178.7 181.0
5000 179.6 174.0
10000 179.2 174.0
40000 178.8 174.0
14 | bulceq2 18 -77.4 1000 -75.8 -73.3
5000 -79.6  -77.3
10000 -79.7 -77.3
40000 -81.6 -76.5
15 | bagzued 19 35.0 1000 25.7 25.0
5000 29.8 23.2
10000 28.1 25.0
40000 25.0 27.4
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Table 3: Summary of Results: large molecules.

No. | Molecule Nygin  Reference FCN evals GA  PDS
16 | bedgew 22 -73.4 1000 -84.8 -79.2
5000 -74.0 -79.8
10000 -95.8 -89.0
40000 -88.1 -85.9
17 | buftif 24 2205.1 1000 -194.2 -183.9
5000 -206.4 -191.5
10000 -212.2 -191.5
40000 -208.3 -193.0
18 sprot 32 -354.0 1000 -342.4 -337.4
5000 -362.0 -352.5
10000 -348.9 -352.5
40000 -360.7 -357.8
19 | sprotbpcapl 39 -558.0 1000 -563.4 -534.6
5000 -538.1 -541.4
10000 -541.8 -543.9
40000 -566.7 -567.9
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Table 4: Effect of the number of niches on final energy, 10000 functions. A * indicates which,
if either, of the two runs found an energy at least 1 kcal/mol lower than the other.

No. | Molecule Ny | Reference GAl GA2
1 abazes 2 0.5 0.5 0.5
2 acfpch 3 2.3 2.3 2.2
3 abinor?2 4 15.0 9.2 9.2
4 acdzur 5) 2.7 -6.1 -6.0
5 abtoet 6 21.2 17.5 17.5
6 acthbz 6 11.4 4.5 4.5
7 acarap 8 -95.7 -98.4  -99.9%*
8 aaxthp 10 972 -102.6 -102.6
9 acinst 10 -87.4 -87.3 -87.3
10 | acbuol 12 -10.5 -14.4 -14.4
11 | cazkuj 13 31.1 20.7  19.5%
12 | cacsti 14 168.8 167.5 166.4*
13 | bettez 16 181.7 179.2%* 181.4
14 | bulceq?2 18 -77.4 -79.7 -79.8
15 | bagzued 19 35.0 28.1 17.3*
16 | bedgew 22 -73.4  -95.8%* -82.4
17 | buftif 24 -205.1 -212.2%  -189.8
18 | sprot 32 -354.0 -348.9 -352.8%*
19 | sprotbpcapl 39 -558.0 -541.8*%  -537.6
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Table 5: Effect of search scheme size (SSS) on final energy: large molecules.
No. | Molecule Ngn  Reference FCN evals SSS=2N SSS=4N

16 | bedgew 22 -73.37 1000 -79.2 -72.2
5000 -79.8 -80.0

10000 -89.0 -80.0

40000 -85.9 -85.9

17 | buftif 24 -205.07 1000 -183.9 -194.6

5000 -191.5 -195.3
10000 -191.5 -196.8
40000 -193.0 -209.5
18 | sprot 32 -354.0 1000 -337.4 -337.4

5000 -352.5 -337.4
10000 -352.5 -337.4
40000 -357.8 -352.5
19 | sprotbpcapl 39 -558.0 1000 -534.6 -524.4

5000 -541.4 -542.1
10000 -543.9 -542.1
40000 -567.9 -542.1
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Figure 2: Continuation
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Figure 3: Energy difference between the reference value and the lowest energy found after
1000 function evaluations. The molecule number refers to that given in Table 1.
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Figure 4: Energy difference from reference energy for best conformation found from any of
the runs.
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