
More Gains Than Score Gains? High School Quality
and College Success

Daniel Hubbard∗

January 16, 2018
This is a working paper! The latest version is available at

www.bit.ly/HubbardJMP.

Abstract

Test-score value-added models have become very popular metrics to determine
school quality, but they focus solely on how students perform while they attend the
school being evaluated, rather than how that school prepares them to succeed after
graduation. A narrow focus on improving test scores may crowd out investments in
student learning that may have more persistent effects. I measure the test-score value
added of all public high schools in Michigan, then match the results onto student tran-
scripts from public colleges in Michigan to determine the relationship between schools’
ability to improve student test scores and the college achievement of their alumni. I
find that students who attend high schools with higher value added perform better
in college, both in tested and untested subjects; a student who attends a high school
one standard deviation above the mean level of value added will have first-year grades
about 0.09 grade points higher than the grades of an identical student in an average
high school. The effect remains positive and highly significant after a variety of ad-
justments to deal with selection into college and into high school. This result implies
that schools with high value added are not earning those scores by teaching to the test
or by reallocating resources toward tested subjects, but instead by preparing students
effectively to perform well in the standardized test and beyond.
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1 Introduction

Most measures of school quality focus only on how a school’s students perform while they

attend that school. Accountability measures such as average test scores, school value-added

measures, graduation rates, and many other metrics focus on outcomes that occur before

(or as) a school’s students graduate. While this allows the metrics to focus on the things

that the schools being evaluated influence most directly, it also treats success at the given

level of education as an end goal rather than a stepping stone. In reality, earning a high

score on a standardized test does not, or should not, mean anything on its own. Test scores

and other such metrics are valuable as signals of what students have learned and, perhaps

more importantly, how much knowledge they have accumulated to support them in further

education and in their careers.

Test-score value-added models are the current methodological gold standard, but even

these models generally stop at or before graduation. The skills used to perform well on a

test may not transfer well into other contexts, and the knowledge accumulated may fade out

before students can continue to apply it. Even well-designed exams can have unique types

of questions that test students’ exam-preparation skills more than their content knowledge.

When faced with pressure to have high test scores, either in average scores or in value added,

teachers can “teach to the test”, drilling students on specific aspects of the exams in lieu

of maximizing their content knowledge or providing transferrable skills. Students who are

“taught to the test” will score highly on that particular exam, but will not have knowledge

of the subject matter that will persist into other contexts.

I measure the persistent value of going to a “good high school”, defined here as a high

school that raises students’ test scores. Particularly, I evaluate the relationship between

high schools’ contributions to test-score gains and their alumni’s achievement in college. In

this study, I develop a theoretical model in which schools allocate their resources between

test-specific preparation and teaching of content, subject to an endowment budget constraint

and accountability measures of varying strictness. Schools with high endowments (generous

funding, for instance, or talented students) are unconstrained by the test score requirement

and can allocate their resources as they please, while schools with lower endowments may

need to allocate resources away from teaching and toward test preparation in a way that they

would not if there was no accountability. Some schools may not be able to satisfy high-stakes

accountability constraints regardless of their resource allocation, and they go out of business.

I then test the findings using administrative data from public high schools and public

colleges in Michigan. I develop value-added scores for each high school in Michigan using

test scores in math and reading (the two most highly-emphasized subjects in school account-
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ability), then match high school students to their college transcripts and examine the effects

of test-score value added on their grades in their first-year college courses in tested subjects

and other subjects. I show that attending a school with high test-score value added predicts

higher first-year grades across the board, in both tested and untested subjects, controlling

for students’ middle-school test scores and an extensive set of covariates. I include a number

of adjustments for selection into college and into high school, and the result is robust to all

of them. Effects are similar across racial groups, socioeconomic groups, and college settings;

the benefits are not limited to more-privileged students or students in four-year colleges.

2 Literature Review

This study fits into two principal strands of literature. The first strand deals with the long-

term effects of attending a “good” school on outcomes such as college graduation, earnings,

or disciplinary incidents. The second focuses on how schools respond to high-stakes testing

and other forms of accountability.

The first strand largely takes advantage of excellent integrated state data systems in states

such as Texas and North Carolina. Deming et al. (2014) take advantage of a school choice

lottery in Charlotte, finding that students who attend their first-choice (and presumably

higher-quality) school are more likely to complete college, with effects concentrated among

female students. Deming et al. (2016) find that Texas students who attend schools that

raise high-stakes test scores in response to school accountability are more likely to attend

and graduate from a four-year college, and their earnings at age 25 are higher. Jennings et

al. (2015) find that high school quality explains more of the difference in college attainment

than in test scores, and that high school quality can reduce racial gaps in student outcomes

but exacerbates income gaps. Jackson (working) uses data from North Carolina to show

that teachers can have larger and more-persistent effects on behavior, grades, and on-time

completion that surpass their impacts on test scores, particularly for English teachers.

Other analyses in this strand make use of charter-school lotteries and other randomized

experiments. Dynarski, Hyman, and Schanzenbach (2013) revisit the Tennessee STAR exper-

iment and find that assignment to a small class increased students’ probability of attending

and completing college and their probability of studying a high-earning field such as science,

engineering, or business; the effects were particularly large among black students, and they

were well-predicted by the shorter-term effects on standardized test scores. Angrist et al.

(2016) find significant effects of charter attendance on exit exam scores, SAT scores, and

AP scores; the effects on college attendance are more modest and mostly involve movement

away from community colleges and toward four-year colleges. Dobbie and Fryer (2015) find
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wide-ranging effects of assignment to the Harlem Children’s Zone, ranging from increased

test scores to reductions in the probability of teen pregnancy and incarceration. Allensworth

et al. (2017) find improvements on academic outcomes from attending higher-performing

non-selective schools in Chicago, though the effects do not extend to selective schools.

A number of studies have weighed in on the effects of accountability on teaching prac-

tices and student learning. Cohodes (2016) finds reason for optimism in Boston’s charter

schools, as these schools manage to raise students’ test scores without placing disproportion-

ate weight on higher-stakes subjects or common question types. Merseth (2010) views the

high-performing Boston charters with more skepticism, noting their students’ more modest

gains on college entrance exams.

Other schools’ test score gains may owe more to behaviors that have less to do with sus-

tainable learning. Jennings and Bearak (2014) find that most of the score gains in several

large states come from the most common question types, implying that such questions are

particularly emphasized in the test preparation as well as in the testing. Jacob (2005) exam-

ines a new accountability policy in the Chicago public school system and finds that schools

that raise high-stakes exam scores often do not raise low-stakes exam scores, as the schools fo-

cus heavily on test preparation, retention of underperforming students, and careful selection

of the set of students to be tested. McNeil and Valenzuela (2000) find an almost single-

minded focus on test score gains in Texas schools, crowding out many other valuable school

functions. Both Jacob (2005) and Neal and Schanzenbach (2010) note the reallocation of

resources toward students who are on the margin between passing and failing high-stakes ex-

ams in the Chicago public schools. Ahn (2016) and Muralidharan and Sundararaman (2011)

outline valuable theoretical models of behavior under accountability; Ahn (2016) focuses on

school-level investments, proposing that schools invest in test preparation when they are in

danger of sanction but this detracts from teaching, while Muralidharan and Sundararaman

(2011) focus on teacher merit pay and show that teachers may similarly be tempted to move

away from curriculum teaching and toward test preparation when their bonuses depend on

test scores.

3 Theoretical Framework

3.1 Setup

Schools exist for the purpose of helping students learn, and in the absence of any testing,

schools would expend as much effort as they saw fit on student learning. However, once low-

stakes testing is put into place, if test scores are less than perfectly correlated with student
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learning, schools may adjust their practices to maximize some function of test scores and

student learning. This does not impose any constraints; it merely adds another variable to

the schools’ objective functions. In practical terms, even if there is no formal accountability

system in place, families may still be hesitant to send children to a school with low stan-

dardized test scores, giving schools an incentive to consider them in their resource allocation

decisions. In turn, this incentive may induce schools to increase their effort.

High-stakes accountability imposes formal penalties for low performance. A simple high-

stakes accountability system states that a school’s average test score must be above some

threshold score θ, or else the school will be closed. High-stakes accountability may also induce

a further increase in effort above the level under low-stakes accountability.

Let each school j consume two types of resources: short-term resources S, which only

affect standardized test scores T , and long-term resources L, which simultaneously1 affect

both test scores and student learning G. Short-term resources are more effective in producing

test scores than are long-term resources. In other words, Tj = f(Sj, Lj);Gj = g(Lj);
∂T
∂S

>
∂T
∂L

> 0.

Schools get some utility2 Uj from student learning and, if there is a testing regime in

place, test scores. However, they gain no utility if they are shut down because they do not

meet the high-stakes accountability threshold. We can phrase this as Uj = p(Gj) under no

accountability, U∗j = p(Tj, Gj) under low-stakes testing, and U∗∗j = 1(Tj ≥ θ)p(Tj, Gj) under

high-stakes testing. Under any accountability regime,
∂Uj
∂Tj

> 0,
∂Uj
∂Gj

> 0.

The resources have costs cS and cL, respectively. Schools’ effort E is an increasing function

of the strictness of accountability A; for convenience, I normalize E(0) = 1, to phrase all

effort levels as relative to the baseline of no accountability. Each school has an endowment

Ωj; schools face the effort-weighted budget constraint ΩjE(A) = cSSj + cLLj. To emphasize

the shortcut nature of teaching to the test, let cS < cL. High-stakes accountability is more

stringent than low-stakes accountability, which in turn is stricter than no accountability;

A∗∗ > A∗ > 0.

3.2 An Example With Cobb-Douglas and Linear Functions

Let both the utility function and the production functions be Cobb-Douglas, and let the

effort function be linear, as follows. All j subscripts are removed for ease of reading.

1This is extremely important. While most traditional production equations require resources to be al-
located toward producing one good or another, if a school invests in long-term resources, those resources
increase the output of student learning and test scores at the same time. This models the true usefulness of
those resources more effectively, in addition to making the model much easier to solve.

2I am modeling schools as firms here, but I use “utility” in place of “profit” in order to prevent confusion
related to for-profit and non-profit schools. The schools in this model do not have a financial motive.
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(1) U = TαGβ

(2) T = KSγLδ; γ > δ

(3) G = BLζ

(4) E = 1 + A

K, B, and all lower-case Greek letters are non-negative constants. Different schools may

have different values of these parameters.

I begin with the case of no accountability, in which A = 0 and thus E = 1. The school

spends its entire endowment on long-term resources:

(5) L0 =
Ω

cL

Under low-stakes testing A∗ > 0, the school’s effort increases to 1 + A∗. Substitute the

production functions into the profit function in order to create a utility function over the

consumption of the teaching resources. I remove j subscripts for readability.

(6) U = (KSγLδ)α(BLζ)β

Rearrange and collect terms, and define a new constant D ≡ KαBβ.

(7) U = DSαγLαδ+βζ

The marginal rate of substitution between S and L is:

(8) MRSS,L =
αγL

(αδ + βζ)S

Set this equal to the price ratio cS
cL

, substitute in from the budget equation, and get:
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(9) S∗ =
Ω(1 + A∗)

cS

(
αγ

αγ + αδ + βζ

)

(10) L∗ =
Ω(1 + A∗)

cL

(
αδ + βζ

αγ + αδ + βζ

)
L∗ > L0 if 1 + A∗ > αγ+αδ+βζ

αδ+βζ
; in other words, long-term resource consumption (and, by

extension, learning) is higher under low-stakes testing than under no testing if the increase

in effort is greater than the relative importance of long-term resources in the school’s utility

function.

Moving to a high-stakes testing regime A∗∗ > A∗ is unequivocally beneficial in schools

that meet the threshold score with their unconstrained optimal resource bundle; the math

is the same except A∗∗ replaces A∗ in the respective formulas. Even if the school would not

have met the threshold at its low-stakes optimum, if the additional effort induced by the

high-stakes testing puts the school over the threshold, there will be a commensurate increase

in long-term resource consumption and therefore student learning.

The problem is not analytically tractable under high-stakes testing if the unconstrained

optimum bundle does not meet the constraint; the school will alter its its resource bundle so

that the constraint is just satisfied and consume the solution to the following system:

(11) KSγLδ = θ

(12) Ω(1 + A∗∗) = cSS + cLL

In lieu of determining the exact levels of S and L that a school will consume under high-

stakes accountability in order to meet the threshold, I show that schools will respond to

falling short of the threshold score by moving toward short-term resources if αδ+βζ
cL

> αδ
cS

. If

the costs of the short-term and long-term resources are equal, it is always more profitable to

move toward short-term resource use from the unconstrained optimum. Details are in the

Mathematical Appendix.

Some schools have such low endowments that they cannot meet the constraint; there does

not exist a pair (S, L) in their budget set such that KSγLδ ≥ θ. In this case, the school shuts

down.
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3.3 Interpretation

The main implication of this model is that test score gains under high-stakes accountability

are more likely to reflect increased content knowledge in wealthier schools or schools with

higher-performing students, while schools without these luxuries may make more use of test

preparation methods to improve scores. As such, these schools with greater endowments will

have a stronger relationship between test score improvements and long-term learning than

their poorer counterparts. Schools with high endowments are more likely to be able to choose

their utility-maximizing levels of resources without being bound by the constraint. Because

the constraint requires only a certain level of test scores, constrained schools will be forced

to sacrifice student learning to meet the test score minimum, and will often do this through

trading long-term resources for short-term ones. The endowment can be thought of as the

school’s financial budget, but this is not the only interpretation; a school could also have a

high endowment because its teachers are effective or its students are talented. If its teachers

and/or its students are especially skilled, a school does not need to devote many resources

to test preparation and can focus as much as it wishes on student learning3.

In the Cobb-Douglas example, schools will consume more short-term resources S if their

endowment Ω increases, the cost of short-term resources cS decreases, the productivity of

short-term resources γ increases, or the importance of test scores in the utility function α

increases. Schools will consume more long-term resources L if Ω increases, the cost of long-

term resources cL decreases, the productivity of long-term resources in producing test scores

δ increases, the productivity of long-term resources in student learning ζ increases, or the

importance of student learning in the utility function β increases.

I am intentionally agnostic about the proper values of α and β. Some schools may be

philosophically opposed to testing and have an α of 0; that is, test scores have no role in

their utility function other than through the constraint. Others may place heavy weight on

test scores and have very high values of α; one could imagine a for-profit charter school in

a poor and densely-populated area, for instance. There are many schools to choose from in

the area, but they are generally seen as being low-quality. The charter must attract enough

students to make a profit, and the easiest signifier of quality when the competing schools are

low-performing is higher test scores.

Note that the threshold score θ does not enter into the expressions for the unconstrained

maximizing resource consumption bundle. If the threshold is met by the actions that the

school would take anyway, the numeric value of the threshold score does not matter. However,

when the constraint binds, θ does enter into the expressions for the maximizing bundle.

3Alternatively, these qualities could be seen as lowering the costs of the resources; better teachers can
provide content knowledge more easily, for instance.
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Schools must adjust their consumption and consume the right amounts of resources to just

meet the threshold.

This model assumes a single representative student in a school; it does not account for

how resources could be targeted within a school. In reality, of course, schools are composed of

wide varieties of students with abilities all over the distribution. If schools have an idea of how

their students would perform on a standardized test at the moment, they can allocate their

resources among the students in a more targeted fashion. Under an accountability regime in

which schools are rated based on the fraction of students exceeding a proficiency threshold,

for instance, schools may apply short-term resources to students near the threshold to ensure

that they pass the test, while students in the upper part of the distribution may receive

long-term resources and students at the very bottom might receive nothing at all. A regime

like the one outlined here, in which schools are rated based on average test scores, might

leave more room for students in most of the distribution to receive short-term resources,

although if one assumes the returns to short-term resources are low for students near the top

of the distribution (both because they cannot score much higher and because the last few

concepts are the most difficult), the highest-ranking students are still less likely than their

lower-achieving peers to receive short-term resources.

The Cobb-Douglas functional form is a convenient illustration, but some of the most basic

conclusions hold when the functional form assumption is relaxed. Specifically, as the cost of

a resource decreases, schools will demand more of it; as endowments increase, schools will

demand more of both resources. As schools place more emphasis on test scores (via increasing
∂Πj
∂Tj

), their demand for short-term resources will go up. Effects of some other parameters are

more ambiguous.

4 Data and Methodology

4.1 K-12 Data

This project draws from several different administrative data sources. I begin by using

student-year level test scores and demographic data from public middle and high schools in

Michigan to estimate school value added, then merge the K-12 data with several sources of

college data to create the variables necessary to measure postsecondary outcomes.

My base sample is all students in Michigan public4 schools, who first sit for the 8th-grade

math and reading Michigan Educational Assessment Program (“MEAP”) test between the

4For the purposes of this paper, “public” schools include both traditional public schools run by local
school districts and charter schools.
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2005-06 and 2007-08 school years. Students must take the 11th-grade standardized exam

(which includes the ACT) to be included in deriving the value-added model; other outcomes

do not condition on having any data past eighth grade. Students who take the 8th-grade

MI-Access exam for special-education students are dropped from both samples.

I merge in some student characteristics (race, gender, age, limited English proficiency,

economic disadvantage5, special education status) measured each year, and the student’s

home district and the school that the student attends measured three times per year6, as

well as the student’s ZIP code and Census block group. The latter two variables allow me

to merge in neighborhood household income from the American Community Survey (along

with a missing indicator if such data are unavailable for the given student).

Because students may change schools within an academic year, I briefly reshape the data

to the student-collection period level, so that I can determine the fraction of periods between

the middle-school exam and the high-school exam that a student attends each school. I

use this fraction to assign each student to the school that the student attends for the most

collection periods; students who do not attend any school for four collection periods or more

are not used to derive the VAM.7 I keep the values of economic disadvantage, limited En-

glish proficiency, and special education enrollment from the student’s eighth-grade year as

to avoid any manipulation by their high schools. I bring in a few school-level aggregate vari-

ables, keeping the most common values for indicator variables and the means for continuous

variables. Finally, I reduce the sample to one observation per student, keeping the student’s

first home district and Census block group while attending their longest-tenured school.

4.2 Value-Added Estimation

To calculate schools’ value added, I follow the procedure outlined in Chetty, Friedman, and

Rockoff (2014; henceforth “CFR”). This process starts by regressing students’ 11th-grade test

scores Yijnt (an average of math and reading) on their 8th-grade scores Yi,t−3 (math, reading,

and the interaction of the two), a variety of student, school, and neighborhood demographics8

(Xi, X̄j,t−1, and Z̄n, respectively), cohort dummies τt and a high school fixed effect σj.

5During the sample period, economic disadvantage is measured by a student’s eligibility for subsidized
school lunch.

6Following the Center for Educational Performance and Information’s terminology, I refer to the three
measurement dates per year (once each in the fall, spring, and end of year) as “collection periods”.

7Previous versions of this paper have weighted the contributions of each student+school combination
according to the fraction of time spent in that school; the results do not change. The current specification is
simpler to explain.

8See Appendix B.1 for the full list.
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(13) Yijnt = λ+ ψ1Yi,t−3 + Ψ2Xi + Ψ3X̄j,t−1 + Ψ4Z̄n + τt + σj + εijnt

I take a “residualized score” for each student, consisting of the school fixed effect and the

error term, and collapse the data to leave one observation per school-by-year combination,

keeping an average residualized score ρjt for school j in year t.

(14) ρjt =
1

Njt

Njt∑
i=1

σj + εijnt

I then regress the average residualized score on the same school’s average residualized

scores from each of the preceding and following two years, plus the relevant missing indicators.

The predicted value ρ̂jt from this regression is the value added for the given school in the

given year.

(15) ρjt =
2∑

y=−2,y 6=0

κyρj,t+y + ξyMissingj,t+y + øjt

The main advantage of the CFR model is that it is robust to noise, measurement error, and

cohort-specific shocks, through its Bayesian shrinkage “leave-one-out” framework. Results

do not change significantly if I use a Bayesian shrinkage estimate of the school value added

without the leave-one-out specification (see Koedel, Mihaly, and Rockoff 2015; Herrmann,

Walsh, and Isenberg 2016), a simpler one-step VAM, or a two-step model (as in Ehlert et al.

2014).

Figure 1 presents the distribution of value added across schools, weighted by the number

of students. Most estimates are between -0.3 and 0.3 standard deviations; there are fewer

positive estimates than negative estimates. Figure 2 repeats the exercise but with one obser-

vation per school instead of per student; there is more dispersion in these estimates, but the

outlier schools tend to be small. A school that is one standard deviation better than average

improves students’ test scores by 0.234 student-level standard deviations over their 8th-grade

baseline scores, corresponding to about 1.1 points out of 36 on the ACT composite.

Table 1 provides detail about how students are distributed across levels of school value

added. Even as the measure focuses on student improvement rather than raw scores, the

students in higher-value added schools are more privileged and higher achieving than their

counterparts in lower-value added schools. 58% of students in these schools are economi-
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cally disadvantaged, and 35% are black; these figures are 19% and 13%, respectively, in the

highest-quartile schools. The average 8th-grade exam score in the lowest-quartile schools is

0.341 standard deviations below the statewide mean, while the average in the highest-quartile

schools is 0.384 standard deviations above the statewide mean. I also include several interme-

diate outcome measures separated by school VAM quartile; students in schools with higher

value added perform better on their 11th-grade exams and are more likely to graduate from

high school and enroll in college.

4.3 College Data

Most of the outcome data used in this paper come from a data set called STARR. The STARR

data consist of student-course level records for all public colleges in Michigan, starting with

students who attended college in 2009. Each student would have a separate observation

for each course that the student has taken at a Michigan public college (including both

community colleges and four-year colleges), containing information about the student, the

course, and the student’s grade in the course. Unless stated otherwise, grades are expressed

on a 4.0 scale (3.7 for an A-, 3.3 for a B+, etc.) in this study.

I keep only credit-bearing courses from a student’s first year in a Michigan public col-

lege9. I drop courses titled “Departmental Credit” (which tend to be credits for Advanced

Placement or International Baccalaureate scores rather than for college coursework), drop

observations from students who take the subject in question at multiple institutions in the

same year, and restrict math and English courses10 to be the first course taken in the given

subject; if a student takes multiple math courses or multiple English courses at once in the

student’s first semester taking a course in that subject, the course with the lower course

number is kept (for instance, “MATH 215” over “MATH 217”). I keep all first-year courses

in subjects other than math and English.

The final data preparation step is to merge the data sets together. I merge the value-

added measures onto the 8th-11th grade student observations, and then merge the resulting

file into the college data. What remains is one observation per student-course combination,

containing the student’s demographics, high-school value added, and course performance. In

order to reduce the impact of events that happen between high school and college, college

observations are dropped if a student does not start college “on time”, meaning five years

after taking the 8th-grade exam.

In order to have at least some information about students who do not attend college at a

9Because STARR only contains data from Michigan public colleges, students technically could have taken
courses at other colleges first, but this is unlikely given later restrictions on time since graduation.

10I identify math and English courses using the course codes listed in Appendix B.2.
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Michigan public institution, I also merge in enrollment and graduation information from the

National Student Clearinghouse. These data are available for colleges attended by about 90%

of Michigan public-school students. The focus of the paper is on the course outcomes, but

examining the effects of high school quality on other outcomes such as college attendance and

completion informs the calculations made to ensure that the course grade results are robust.

Table 2 outlines the changes in college attendance across the distribution of test-score

value added. While every quartile of schools in the distribution sends around 60% or more of

its students to college, students who attend schools with higher value added are more likely to

attend college, a gain driven mostly by increased probability of attending a public four-year

college in Michigan. The fraction of students attending a private college in Michigan and

the fraction attending a community college is higher in the middle of the distribution than

at the ends but stays in a fairly narrow band. Of particular concern for the identification of

this paper, however, is the steady increase in the probability of being in the college grade

sample as high school VAM increases. I explore this more in Section 4.5.

4.4 Empirical Specification

To determine the effect of high-school value added on college performance, I build up to the

following specification:

(16) Gradecijknt = ι+φ1Yi,t−4 +φ2V alueAddedj,t−1 +Φ3Xi +Φ4X̄j,t−1 +Φ5Z̄n +χckt+νijkct

The course grade earned by student i from neighborhood n, who attended high school j

before enrolling at college k and taking course c in semester t, is a function of the student’s

middle-school test score Yi,t−4i; student characteristics Xi; school-level average characteristics

X̄j,t−1; neighborhood characteristics Z̄n; a course fixed effect χckt; and the high-school11 value

added.

Empirically, the course grade is measured on a 4.0 scale, and the student characteristics

are the same ones used in the value-added model (except with the 8th-grade score included as

an average of math and reading, up to a fourth-order polynomial, as opposed to separating

them and including an interaction). I scale the value added in terms of its school-level

standard deviation; the coefficient φ2 represents the effect of raising a school’s test-score value

added from the statewide average to one standard deviation above it. Standard errors are

11I use this term for convenience to describe the school that a student attends most frequently between the
exam taken in grade 8 and the exam taken in grade 11. It could be a junior high school, which has grades
7-9; it could be a school that contains grades K-12. It does not need to only contain grades 9-12.
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clustered by school; this accounts for serial correlation and is generally more conservative than

clustering by school and year. To account for the generated regressor in the value-added term,

I present bootstrapped standard errors in the full specifications, following Bastian (working),

among others. The fixed effects χckt are for each combination of college, year, semester,

subject code, and course number (for instance, University of Michigan-Ann Arbor, fall 2011,

ENGLISH 125). Only students who take a course in a Michigan public college within five

years of the year in which they take their 8th-grade test are included. Observations in the “all

subjects” and “other subjects” specifications are weighted by their fraction of the student’s

relevant credits in the non-bootstrapped specifications.

The specifications for outcomes other than college course grades are similar, but with a few

important modifications. There is one observation per student, rather than one observation

per student-course combination; there is no course fixed effect, because there is no course

being measured; and the sample no longer consists only of students who enroll in college, or

even students who take the 11th-grade exam. Instead, anyone who has an 8th-grade exam

score that is not from the MI-Access special education exam is included in the sample.

4.5 Threats to Identification

Potential biases lurk throughout the empirical analysis process. First, the 8th-grade exam

scores may be measured with error, stemming from anything from poorly-filled bubbles to a

malfunctioning Scantron machine. If the measurement error is classical, this would introduce

attenuation bias into the value-added estimates, and in turn the coefficients in the outcome

regressions would be biased upward as they measure the effect of an attenuated regressor.

The measurement error is not precisely classical, as scores are necessarily bounded between

0% and 100%, but as 0.02% of students receive the minimum or maximum score on the math

exam and 0.01% receive the minimum or maximum on the reading exam, the bounds are so

rarely reached that I treat the measurement error as classical.

The next threat comes from selection into high schools. One of the most important issues

in the value-added literature is that attendance in “better” schools is not random. Even

though they cannot observe value added explicitly at the time that students enroll, schools’

reputation for quality is presumably at least somewhat positively correlated with value added.

Students then sort across districts across two dimensions that reinforce each other. Families

sort across home districts based on preferences for education and available resources, among

other things; students can then, conditioning on where they live, take advantage of policies

that allow them to attend schools in other districts or in specially-designed settings such

as charter schools and magnet schools. In both cases, students best equipped to succeed in

college will be sorting into higher-quality high schools, biasing my estimates upward.
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I present a handful of falsification tests in Table 4 to quantify the degree of the sorting. If

there was no sorting, then high-school value added should not predict 7th-grade test scores,

7th-grade attendance, Census block group poverty rates, or Census block group education

levels. However, all of those variables except for poverty rates are indeed predicted by high-

school VAM. For instance, students who attend high schools with one standard deviation

higher value added measures have 7th-grade scores that are about 0.043 standard deviations

higher, even after controlling for 8th-grade scores and the other typical covariates. This is an

economically modest but statistically significant bias.

Finally, students in higher-VAM schools are more likely to attend college, most notably

at the in-state public institutions that collect the transcript data used in this study, as shown

in Table 3. Table 3 contains probit marginal effects for various attainment outcomes: taking

the 11th-grade state exam, graduating high school, attending college, and being in the sample

for the course grade specifications. All of these are predicted very well by the test-score value

added of a student’s high school. The college outcomes track closely with the results shown in

Table 2, showing that the unconditional results in Table 2 are not driven solely by covariates

that are controlled for in the probits. However, they raise concerns about selection into the

college grades sample.

There are two different interpretations of the selection. On one hand, if students are more

likely to get into college if they attend a good high school, then perhaps the students who

still manage to get there despite attending a low-performing high school must be particularly

resilient, which makes them likely to perform better in college. This would argue against

finding a positive effect of high-school value added on college performance. However, an

alternative interpretation is that students are sorted into high schools by some unobserved

quality; this quality makes the students perform better in high school, raising their value

added, and in college, raising their grades, but not due to anything that their high schools

contributed. This would bias toward finding a positive effect.

5 Course Results

5.1 Main Specifications

Table 5 presents results for the full sample, adding more covariates with each column. The

specification in column 5 weights the contribution of each observation by its fraction of the

student’s total credits, but does not bootstrap the standard errors; column 6 includes boot-

strapping but weights 1-credit classes equally to 4-credit classes. Regardless of specification,

there is a positive and significant relationship between high-school value added and college
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course grades. The effect of attending a school with one standard deviation higher VAM is

about 0.089 grade points, almost one third of the difference between a B and a B+. This

result provides evidence against the hypotheses that schools are teaching to the test; there

appear to be long-term benefits to attending a school that raises high-stakes test scores. The

effect size does fall short of the 0.1-standard deviation threshold that denotes a large impact

in the education literature, however; the standard deviation of course grades is about 1.34

grade points in this sample, meaning that the effect size is closer to 0.07 standard deviations.

Table 6 presents results by subject, using the specification from column 6 of Table 5; the

effect is very similar. Controlling for a full set of demographics and bootstrapping standard

errors, the effect of going to a school with one standard deviation higher VAM is about

0.122 grade points in math, positive and highly significant. For English, the effect sizes

are slightly smaller at about 0.065 grade points, still highly significant when including full

controls and bootstrapped standard errors. In subjects other than math and English, the

impact of attending a one-standard deviation more-effective school is about 0.087 grade

points. This is evidence against the hypothesis that schools are focusing only on subjects that

have high-stakes tests, at the expense of overall skills and learning in fields not subject to test

score-based accountability. The courses in this category include anything from psychology

to business to welding; none of these subjects are included in accountability measures and

many of them are not even taught in high schools.12

5.2 Accounting For Biases

I begin by accounting for the attenuation bias in the value-added model. Although students’

7th-grade test scores are likely measured with a similar type of error as their 8th-grade scores, if

these measurement errors are not correlated with each other, one can be used as an instrument

for the other. In this case, I use 7th-grade test scores to instrument for their 8th-grade

counterparts in the first step of the VAM. I then proceed with the model as normal, using

the residualized scores from the instrumented first step to constructed the predictions used

in the value added, and then using the resulting value-added measures as regressors in the

outcome specifications.

To reduce the bias from selection across high schools, I construct a “home-district” sample.

This sample consists only of students who attend a non-charter, non-magnet high school in

their zoned school district. These students often, though not always if their district offers

12One reason why there may not be reallocation toward high-stakes subjects in high school is the Michigan
Merit Curriculum (“MMC”), which requires that students take biology, either chemistry or physics, three
social studies courses, two years of a foreign language, gym, art, and an online course (in addition to its math
and English requirements). The first cohort exposed to the MMC entered high school in the fall of 2007;
some cohorts in this study preceded the MMC, while others were exposed to it. (Jacob et al. 2017)
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multiple high schools, attend the “default” high school associated with their home address.

This reduces the upward bias from selection into higher-quality high schools, although it

does not eliminate it, as families also sort residentially by income, education, and preferences

for school quality. Appendix Table 12 presents the results from Table 4 for this sample; it

remains selected on some observable characteristics, even if the home-district sample deals

with selection on some unobservable characteristics such as motivation.

I conduct three different adjustments for selection into college. First, I present results

estimated for a smaller sample of students who are very likely to go to college. These

students have less margin to have their college-going decisions altered by the quality of their

high school. To construct this subsample, I take advantage of ACT’s cutoff score for college

readiness: a student who meets all of ACT’s benchmarks for college preparation would have a

composite score of 21 (ACT, Inc.). 31% of students in the sample received an ACT composite

of 21 or higher. Because ACT scores are, by construction, influenced by high school quality,

I instead include the top 31% of scorers on the 8th-grade standardized test. 86% of these

students in the lowest-VAM schools attended college; 92.4% of these students in the highest-

quartile schools attended college. Other than in the very lowest quartile, there does not seem

to be a significant unconditional relationship between high-school value added and college

attendance for these “college-ready” students. A relationship remains when I condition on

the usual set of covariates, but it is notably smaller than the equivalent relationship in the

full sample, and there is no significant relationship between high-school value added and

presence in the grade sample for the college-ready students, as shown in Appendix Table 11

Second, Oster (2016) derives a method of accounting for selection on unobservables that

incorporates the relative changes in treatment effects and R2 values as covariates are added

to the model, building on work by Altonji, Elder, and Taber (working). To construct this, I

start by regressing college grades on high-school value added with no other covariates, saving

the R2 value R0 and the treatment effect φ0. I then run the fully-specified outcome model,

again saving the R2 value Rfull and the coefficient on value added φfull. Oster (2016) imposes

that a specification with all possible controls, observable and unobservable, would explain

30% more of the variation than the model with the full set of covariates13; therefore, I let

Rmax ≡ 1.3Rfull. The formula for the bias-adjusted coefficient φ∗ is:

(17) φ∗ = φfull − (φ0 − φfull)
(Rmax −Rfull

Rfull −R0

)
13This parameter is chosen to allow the results of 90% of randomized experiments to be upheld in the

bias-adjusted framework.
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The bias-adjusted coefficients that result can provide a bound on the effect size; it is a

good sign if the bias-adjusted coefficients are not statistically different from their unadjusted

counterparts, while if the bias-adjusted coefficient is actually larger than its unadjusted coun-

terpart, then the bias is skewing the effect toward zero and is of relatively less concern. The

fundamental assumption behind the Oster (2016) formulation is that the unobservables bias

the result in the same direction that the observables do; if the sample is positively selected

on observables, then it must be positively selected on unobservables, and the opposite.

Third, I present results in which I impute grades for students who are not in the grade

sample. I geocode all public colleges in the state, and assign all students who did not attend

college to their nearest community college, while assigning all students who attended private

or out-of-state colleges, or did not take any large enough credit-bearing courses, to their

nearest four-year public college. After “placing” each non-attendee in a college, I then assign

the non-attendees to courses: each of these students is assigned to a math class, an English

class, and one other class in their respective college in the appropriate year. The courses are

chosen randomly, with the probabilities of course placement equal to the observed fractions of

students enrolled in that course. In other words, if 50% of freshmen enrolled in a math class

at Washtenaw Community College in 2011 take college algebra, 25% take calculus, and 25%

take statistics, a non-attendee assigned to Washtenaw Community College would have a 50%

probability of being placed in college algebra, 25% probability of being placed in calculus,

and a 25% probability of being placed in statistics.

I assign grades to these students in two ways. First, as a bounding exercise, I assign 0.0

GPAs to all students in the counterfactual sample. Second, to obtain a more realistic effect,

I use out-of-sample prediction to give grades to these students. In the sample of students

who have course grades available, I regress their course grades on the full set of observables,

except for the value added of their high schools. I then use these estimates to impute the

grades of the students who do not actually attend public colleges in Michigan. For instance, a

student with a high 8th-grade test score taking pre-algebra would likely receive a high grade,

while a student with a low 8th-grade score taking calculus would likely receive a low grade.

5.3 Robustness Results

Table 7 presents estimated coefficients on high-school value added, separated by subject, for

each of the bias adjustments outlined in Section 5.2. While some of those adjustments shrink

the point estimates, almost none of them alter the statistical significance of the results. The

estimates are especially robust to the attenuation bias in the VAM and to across-district

school choice mechanisms; neither the instrumented VAM nor the home-district sample

changes the results meaningfully in any subject. The selection into college makes a slightly
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larger difference, but all of the corrections for this selection leave a positive and significant

effect of at least 0.04 grade points in the all-subjects sample.

Even after all of these corrections, there remains residential sorting across districts. To

place an upper bound on the effect of the sorting, I follow the methodology in Altonji and

Mansfield (working). This involves estimating the contribution of school characteristics to

outcomes, controlling for student-level and aggregated student characteristics. In place of

Equation 13, I run a slightly-altered first-step regression, in which I replace the school fixed

effects with school characteristics Wj,t−1 that are not student aggregates: per-pupil expen-

diture (at the school and district level), pupil-teacher ratio, the fraction of students who

transfer or drop out, and the average certification exam score of the school’s teachers.

(18) Yijmnt = µ+ π1Yim + Π2Xi + Π3X̄j,t−1 + Π4Z̄n + Π5Wj,t−1 + υt + ηijmnt

I then find the variance of the contribution of those school observables Π5Wj and com-

pare it to the variance of the VAM estimates from Section 4.2. The ratio of these vari-

ances
var(Π5Wj)

var(V alueAddedjt)
represents the relative contribution of school observables to school value

added, which places a lower bound on the contribution of the school itself to value added

and an upper bound on the contribution of students’ sorting across schools and districts to

value added. I multiply my regression coefficients by this ratio to determine the minimum

effect size that can be attributed definitively to school quality and not to sorting.

These results are shown in Table 7 as well. I find that this lower bound estimate teeters

along the edge of statistical significance, while its economic significance is somewhat limited,

as a vast change in school effectiveness is met with a fairly modest change in college per-

formance. This does cast some doubt upon my overall results if taken literally. However, it

is an intentionally-conservative lower bound backed by a fairly prohibitive assumption: that

all of schools’ contribution to value added can be contained by observable variables such as

per-pupil expenditure, teachers’ certification scores, and student turnover. This leaves no

room for schools to benefit students by teachers’ creativity and hard work or by creating a

positive learning environment, reducing the secret to student learning to a formula. In reality,

this assumption is too punitive to be realistic; some of the effect can likely be attributed to

students’ sorting across districts, but there is room for schools to help students learn in ways

that cannot be captured in a spreadsheet.
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5.4 Results by Subgroup

One interpretation of the model in section 3 is that schools whose students have weaker

academic backgrounds may be forced to focus on test preparation in order to meet high-

stakes accountability standards, whereas schools with better-prepared students can focus

on content. This would imply a stronger relationship between test-score value added and

college performance in the latter schools, as they provide learning that students can build

upon while the test preparation emphasized in the former schools has less application in other

environments. I test this in Table 8, running the final specification from Table 5 separately

by quartile of high schools’ average 8th-grade exam scores. The results do not support this

hypothesis. The largest point estimates are found in the schools in the bottom quartile;

students gain more from attending schools that raise scores from very low to somewhat low

than from attending schools that raise scores from high to very high.

Brand and Xie (2010) find that students who come from groups less likely to complete col-

lege, such as black students and lower-income students, benefit most from attending college.

This result could possibly extend to attending a good high school, but an opposing argument

is also certainly plausible: that students from disadvantaged groups are underrepresented in

higher-VAM schools (as shown in Table 1), and thus the schools are not designed to serve

them, or they are socially excluded in these schools; either of these may lead to such students

receiving fewer benefits from attending a “better” school.

I test this by estimating college grades results separately for black and white students,

and separately for students who were economically disadvantaged and those who were not,

presented in Table 9. Effect sizes are somewhat larger for black students than for white

students; effects are also slightly larger for poor students than for non-poor students, but not

significantly so. This result is reassuring, as it allays the fear that marginalized students are

being left behind in high-VAM schools while white and wealthier students reap the benefits.

High school VAM alone cannot close the state’s gaps in college achievement, but it may be

a part of the solution.

Finally, the ACT tests academic subjects and is used for admission at four-year colleges;

schools that raise ACT scores may not be giving students the tools needed for success at

community colleges as effectively, particularly in courses outside of the traditional academic

fields. These schools may be focusing on their students who are on the four-year academic

track at others’ expense. I test this by running the college grades results separately at two-

year and four-year institutions, as shown in Table 10. If anything, I find the opposite. The

effect sizes are positive and significant in both two-year and four-year institutions; the returns

to attending a high-quality high school are actually marginally bigger in two-year colleges.
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6 Discussion and Conclusion

6.1 Policy Context

The students studied in this paper, if they complete their secondary education on time, are

members of the high school classes of 2010, 2011, and 2012. During this period, Michigan

public schools were subject to the accountability measures in the No Child Left Behind Act

of 2001 (“NCLB”). High schools were judged on whether they met Adequate Yearly Progress

in math and reading proficiency rates, as well as graduation rates, both for the student

body as a whole and for subgroups of interest such as black students, Hispanic students, and

students eligible for subsidized lunch. The necessary proficiency rates to achieve Adequate

Yearly Progress grew more stringent year by year, putting schools under pressure to im-

prove rapidly (Bielawski 2006). Additionally, the required 11th-grade state standardized test

incorporated the ACT college entrance exam during this time period. The ACT is specifi-

cally designed to be predictive of college performance, which implies a stronger relationship

between state standardized test scores and college outcomes than one might expect from

another standardized test. Additionally, the designers of the ACT state that a composite

score of 21 is the benchmark for college readiness; this standard allows easier comparisons

within the group of students who are expected to go to college. Finally, the Michigan Merit

Curriculum required students during this sample period to take four years of math and En-

glish, three years of social studies, two years of a foreign language, and courses in biology,

art, music, and either chemistry or physics (Jacob et al. 2017). This resulted in more chal-

lenging high-school coursework, and it prevented high schools from dedicating entire days to

math and reading in the way that some elementary and middle schools did to prepare for

standardized tests (McNeil and Valenzuela 2000).

From a policy perspective, or from the perspective of someone who cares about edu-

cational equality in the United States, the empirical results of this paper are encouraging.

The model presents a bleak scenario in which schools with low-achieving incoming students

cannot teach lasting lessons to students because they need to focus so completely on exam

preparation. I do not find empirical evidence to support this claim; if anything, effect sizes

are largest in these schools. Furthermore, effect sizes are notably large for black students

and for economically disadvantaged students; exposing these students to better schools, ei-

ther by improving integration of disadvantaged students into more-advantaged schools or by

making investments in schools with more-disadvantaged populations, can make a meaningful

difference in their long-run success.

21



6.2 Further Research

While this study makes a meaningful contribution to the literature about the student-level

returns to high-school quality and the usefulness of value-added models, room for further

investigation remains. For instance, other measures of high-school quality may predict future

success and long-term learning more effectively than test-score value added does; replicating

the exercises done here, replacing test-score value added with measures related to graduation

rates or other quality metrics, and seeing which best predicts long-term learning, would

be a useful extension. Additionally, the set of students who attend in-state public colleges

immediately after graduation tend to be fairly stable and high-achieving students; looking at

the effects of high-school quality on persistence, completion, and grades at for-profit colleges

would also be valuable, although the selection concerns might run in the opposite direction

from the ones in this paper.

Future researchers and policymakers alike may be interested in learning more about the

characteristics of the schools that see high value added and large effects on college perfor-

mance, particularly those that do so despite having low-performing students at entry. If there

are patterns in the classroom practices most prevalent in these schools, or in how they spend

money, assign teachers, and allocate other scarce resources, then other schools may mimic

these patterns, hoping to achieve similar results. Conversely, there is also a chance that these

schools have unique characteristics that other schools cannot replicate to the same effect.

6.3 Summary

I seek to measure the effect of high-school quality on first-year college course grades, in order

to determine how much of high schools’ value added truly comes in the form of persistent

learning and skills. I match school-year level test-score value added measures onto college

transcripts, looking separately at the effects on grades in all subjects, tested subjects, and

non-tested subjects. Even after numerous adjustments for selection into high schools and

colleges, a stable positive effect of high-school quality on college grades remains; students

who attended a high school one standard deviation above the school-level average receive

first-year grades between 0.04 and 0.1 grade points higher than their otherwise-identical

counterparts who graduated from average schools. This implies that much of these high-

quality schools’ improvements in test scores are driven by durable student learning, a result

that should ease some concerns of some skeptics of standardized testing.
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Figure 1: Distribution of Value Added, Student Level
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Figure 2: Distribution of Value Added, School Level
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Table 1: Student Characteristics by VAM Quartile

Lowest 2nd 3rd Highest

Fraction Black 0.351 0.151 0.1 0.134
Fraction Hispanic 0.054 0.043 0.041 0.029
Fraction Asian 0.011 0.013 0.02 0.046
Fraction in Special Education 0.144 0.129 0.112 0.101
Fraction Limited English Proficiency 0.044 0.025 0.021 0.021
Fraction Economically Disadvantaged 0.578 0.375 0.277 0.194
Fraction in Charter Schools 0.052 0.023 0.022 0.03
Fraction in Magnet Schools 0.111 0.16 0.097 0.094
Average 8th-Grade Standardized Test Score -0.341 -0.035 0.164 0.384
Average 11th-Grade Standardized Test Score -0.369 0.028 0.164 0.38
Fraction Graduating High School 0.686 0.805 0.85 0.873
Fraction Entering College 0.598 0.703 0.765 0.838
Number of Observations 113,666 92,481 84,728 75,791

One observation per student. VAM is estimated following the method in Chetty, Friedman,
and Rockoff (2014).
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Table 2: College Placement by VAM Quartile

Lowest 2nd 3rd Highest

No College 0.402 0.297 0.235 0.162
In-State Community College 0.346 0.375 0.351 0.301
In-State Public Four-Year 0.117 0.187 0.259 0.354
In-State Private 0.067 0.073 0.076 0.065
Out of State 0.068 0.069 0.08 0.118
Any College 0.598 0.703 0.765 0.838
In Grade Sample 0.392 0.513 0.563 0.636
Takes Math, If Ever in Michigan Public College 0.401 0.45 0.472 0.484
Takes English, If Ever in Michigan Public College 0.493 0.517 0.499 0.476
Number of Observations 113,666 92,481 84,728 75,791

One observation per student. VAM is estimated following the method in Chetty, Friedman, and Rockoff (2014).
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Table 3: College Attendance and Graduation - Probits

Takes ACT Graduates HS Any College In Grade Sample

Scaled High School VAM 0.016*** 0.027*** 0.044*** 0.028***
(0.005) (0.005) (0.004) (0.006)

8th-Grade Test Score 0.078*** 0.1*** 0.162*** 0.149***
(0.002) (0.002) (0.001) (0.003)

Female 0.021*** 0.046*** 0.083*** 0.065***
(0.001) (0.002) (0.002) (0.002)

Black -0.002 0.009** 0.092*** 0.05***
(0.004) (0.004) (0.005) (0.006)

Hispanic -0.038*** -0.037*** -0.031*** -0.041***
(0.005) (0.004) (0.005) (0.007)

Asian -0.018** -0.013 0.033*** 0.05***
(0.008) (0.01) (0.012) (0.011)

Special Education -0.02*** -0.017*** -0.067*** -0.077***
(0.003) (0.002) (0.002) (0.003)

Limited English Proficiency 0.008 0.025*** 0.064*** 0.043***
(0.007) (0.007) (0.011) (0.015)

Economically Disadvantaged -0.076*** -0.099*** -0.093*** -0.109***
(0.002) (0.002) (0.002) (0.002)

Block-Level and School-Level Variables? Yes Yes Yes Yes
Number of Observations 366,663 366,663 366,665 366,663

One observation per student. Average marginal effects shown. Value added is estimated following the method in Chetty,
Friedman, and Rockoff (2014), normalized in terms of its school-level standard deviation. Missing values of covariates are
recoded to 0; missing indicators are included but not shown. Bootstrapped standard errors in parentheses, clustered by high
school.
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Table 4: Falsification Tests

7th-Grade Score 7th-Grade Attendance Block-Group Pct. In Poverty Block-Group Pct. With BA

Scaled High School VAM 0.044*** 0.004*** -0.065 1.84***
(0.006) (0.001) (0.318) (0.439)

Student-Level Variables? Yes Yes Yes Yes
Block-Level Variables? Yes Yes No No
School-Level Variables? Yes Yes Yes Yes
Number of Observations 352,629 350,399 366,666 366,666

One observation per student. Value added is estimated following the method in Chetty, Friedman, and Rockoff (2014), nor-
malized in terms of its school-level standard deviation. Missing values of covariates are recoded to 0; missing indicators are
included but not shown. Standard errors in parentheses, clustered by high school.
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Table 5: All Grades, Full Sample

(1) (2) (3) (4) (5) (6)

Scaled High School VAM 0.234*** 0.185** 0.153*** 0.105*** 0.098*** 0.089***
(0.024) (0.019) (0.017) (0.011) (0.014) (0.014)

8th-Grade Test Score 0.328*** 0.274*** 0.332*** 0.316***
(0.007) (0.006) (0.007) (0.007)

Female 0.257*** 0.258*** 0.244***
(0.006) (0.006) (0.005)

Black -0.426*** -0.309*** -0.295***
(0.013) (0.013) (0.013)

Hispanic -0.146*** -0.115*** -0.115***
(0.018) (0.017) (0.018)

Asian 0.026 0.04** 0.027
(0.017) (0.016) (0.017)

Special Education -0.113*** -0.093*** -0.093***
(0.013) (0.013) (0.011)

Limited English Proficiency 0.181*** 0.203*** 0.184***
(0.02) (0.019) (0.019)

Economically Disadvantaged -0.169*** -0.152*** -0.155***
(0.009) (0.009) (0.007)

Course ID Fixed Effects? No Yes Yes Yes Yes Yes
Block-Level and School-Level Variables? No No No No Yes Yes
Bootstrapped or Weighted? Weighted Weighted Weighted Weighted Weighted Bootstrapped
Number of Observations 594,239 594,239 594,239 594,239 594,239 594,239

One observation per student-course combination. Value added is estimated following the method in Chetty, Friedman, and
Rockoff (2014), normalized in terms of its school-level standard deviation. Outcome variable is the grade in the student’s first-
year courses in college, on a 4.0 scale. Math and English courses must also be the lowest-numbered such course in the first
semester in which a math or English class is taken. Missing values of covariates are recoded to 0; missing indicators are included
but not shown. Standard errors in parentheses, clustered by high school.
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Table 6: Grades by Subject, Full Sample

Math English Other Other

Scaled High School VAM 0.122*** 0.065*** 0.099*** 0.087***
(0.015) (0.016) (0.014) (0.015)

8th-Grade Test Score 0.288*** 0.215*** 0.367*** 0.343***
(0.013) (0.01) (0.008) (0.007)

Female 0.287*** 0.346*** 0.223*** 0.21***
(0.009) (0.009) (0.007) (0.006)

Black -0.312*** -0.299*** -0.309*** -0.289***
(0.023) (0.02) (0.015) (0.014)

Hispanic -0.132*** -0.148*** -0.109*** -0.103***
(0.03) (0.027) (0.02) (0.021)

Asian 0.033 0.042 0.039** 0.024
(0.032) (0.027) (0.015) (0.015)

Special Education -0.101*** -0.102*** -0.082*** -0.086***
(0.021) (0.02) (0.013) (0.012)

Limited English Proficiency 0.245*** 0.163*** 0.19*** 0.176***
(0.037) (0.029) (0.021) (0.025)

Economically Disadvantaged -0.094*** -0.16*** -0.16*** -0.166***
(0.014) (0.011) (0.01) (0.009)

Course ID Fixed Effects? Yes Yes Yes Yes
Block-Level and School-Level Variables? Yes Yes Yes Yes
Bootstrapped or Weighted? Bootstrapped Bootstrapped Weighted Bootstrapped
Number of Observations 79,728 86,566 427,945 427,945

One observation per student-course combination. Value added is estimated following the method in Chetty, Friedman, and
Rockoff (2014), normalized in terms of its school-level standard deviation. Outcome variable is the grade in the student’s first-
year courses in college, on a 4.0 scale. Math and English courses must also be the lowest-numbered such course in the first
semester in which a math or English class is taken. Missing values of covariates are recoded to 0; missing indicators are included
but not shown. Standard errors in parentheses, clustered by high school.
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Table 7: Estimates Accounting for Bias

All Math English Other

Instrumented VAM 0.068*** 0.09*** 0.066*** 0.064***
(0.011) (0.016) (0.015) (0.012)

[594,239] [79,728] [86,566] [427,945]
Home-District Sample 0.103*** 0.094*** 0.132*** 0.091***

(0.016) (0.017) (0.02) (0.017)
[482,889] [64,953] [69,758] [348,178]

College-Ready Sample 0.041*** 0.076*** 0.039** 0.035***
(0.014) (0.023) (0.018) (0.012)

[277,361] [36,024] [32,812] [208,515]
Oster (2016) Bias-Adjusted Treatment Effect 0.058*** 0.088*** 0.02 0.058***

(0.014) (0.015) (0.016) (0.015)
[594,239] [79,728] [86,566] [427,945]

Counterfactual Sample, 0.0 GPAs 0.098*** 0.066*** 0.082*** 0.127***
(0.014) (0.014) (0.021) (0.017)

[1,136,000] [243,420] [254,377] [638,203]
Counterfactual Sample, Imputed Grades 0.051*** 0.029*** 0.035*** 0.071***

(0.008) (0.005) (0.006) (0.013)
[1,136,000] [243,420] [254,377] [638,203]

Altonji and Mansfield (working) Lower Bound 0.023* 0.032** 0.017 0.023
(0.014) (0.015) (0.016) (0.015)

[594,239] [79,728] [86,566] [427,945]
Course ID Fixed Effects? Yes Yes Yes Yes
Block-Level and School-Level Variables? Yes Yes Yes Yes

One observation per student-course combination. Estimates shown are the coefficients on the high-school value added term in
the respective regression specification. Value added is estimated following the method in Chetty, Friedman, and Rockoff (2014),
normalized in terms of its school-level standard deviation. Outcome variable is the grade in the student’s first-year courses in
college, on a 4.0 scale. Math and English courses must also be the lowest-numbered such course in the first semester in which
a math or English class is taken. Missing values of covariates are recoded to 0; missing indicators are included but not shown.
Bootstrapped standard errors in parentheses, clustered by high school. Sample sizes in brackets.
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Table 8: Estimates by School 8th-Grade Exam Quartile

All Math English Other

Lowest Quartile 0.131*** 0.159*** 0.139*** 0.122***
(0.02) (0.029) (0.03) (0.022)

[138,781] [18,913] [22,927] [96,941]
2nd Quartile 0.042* 0.078*** 0.006 0.043*

(0.022) (0.03) (0.036) (0.025)
[148,373] [19,994] [22,862] [105,517]

3rd Quartile 0.069*** 0.117*** 0.014 0.071***
(0.021) (0.036) (0.027) (0.027)

[153,237] [20,632] [21,788] [110,817]
Highest Quartile 0.056** 0.085*** 0.015 0.057**

(0.025) (0.034) (0.034) (0.026)
[153,848] [20,189] [18,989] [114,670]

Course ID Fixed Effects? Yes Yes Yes Yes
Block-Level and School-Level Variables? Yes Yes Yes Yes

One observation per student-course combination. Estimates shown are the coefficients on the high-school value added term in
the respective regression specification. Value added is estimated following the method in Chetty, Friedman, and Rockoff (2014),
normalized in terms of its school-level standard deviation. Outcome variable is the grade in the student’s first-year courses in
college, on a 4.0 scale. Math and English courses must also be the lowest-numbered such course in the first semester in which
a math or English class is taken. Missing values of covariates are recoded to 0; missing indicators are included but not shown.
Bootstrapped standard errors in parentheses, clustered by high school. Sample sizes in brackets.
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Table 9: Estimates by Race and Income

All Math English Other

Black 0.13*** 0.134*** 0.125*** 0.13***
(0.021) (0.037) (0.021) (0.024)
[80,442] [11,176] [13,072] [56,194]

White 0.061*** 0.105*** 0.029* 0.059***
(0.014) (0.02) (0.016) (0.012)

[479,533] [63,867] [68,852] [346,814]
Economically Disadvantaged 0.114*** 0.117*** 0.124*** 0.11***

(0.015) (0.027) (0.024) (0.019)
[136,079] [18,753] [22,269] [95,057]

Not Economically Disadvantaged 0.075*** 0.117*** 0.038*** 0.074***
(0.012) (0.023) (0.014) (0.013)

[458,160] [60,975] [64,297] [332,888]
Course ID Fixed Effects? Yes Yes Yes Yes
Block-Level and School-Level Variables? Yes Yes Yes Yes

One observation per student-course combination. Estimates shown are the coefficients on the high-school value added term in
the respective regression specification. Value added is estimated following the method in Chetty, Friedman, and Rockoff (2014),
normalized in terms of its school-level standard deviation. Outcome variable is the grade in the student’s first-year courses in
college, on a 4.0 scale. Math and English courses must also be the lowest-numbered such course in the first semester in which
a math or English class is taken. Missing values of covariates are recoded to 0; missing indicators are included but not shown.
Bootstrapped standard errors in parentheses, clustered by high school. Sample sizes in brackets.

36



Table 10: Estimates by College Type

All Math English Other

Four-Year Colleges 0.076*** 0.095*** 0.049** 0.076***
(0.015) (0.022) (0.023) (0.015)

[332,516] [41,019] [36,923] [254,574]
Two-Year Colleges 0.098*** 0.137*** 0.075*** 0.095***

(0.016) (0.023) (0.021) (0.018)
[254,192] [37,613] [48,495] [168,084]

Course ID Fixed Effects? Yes Yes Yes Yes
Block-Level and School-Level Variables? Yes Yes Yes Yes

One observation per student-course combination. Estimates shown are the coefficients on the high-school value added term in
the respective regression specification. Value added is estimated following the method in Chetty, Friedman, and Rockoff (2014),
normalized in terms of its school-level standard deviation. Outcome variable is the grade in the student’s first-year courses in
college, on a 4.0 scale. Math and English courses must also be the lowest-numbered such course in the first semester in which
a math or English class is taken. Missing values of covariates are recoded to 0; missing indicators are included but not shown.
Bootstrapped standard errors in parentheses, clustered by high school. Sample sizes in brackets.
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A Mathematical Appendix

As stated above, when the high-stakes accountability constraint binds, the result must satisfy

the accountability constraint KSγLδ = θ and the budget constraint Ω = cSS + cLL. Solve

the accountability constraint for S:

(19) Sγ =
θ

ALδ
;S =

θ
1
γ

K
1
γL

δ
γ

Substitute this into the budget constraint:

(20) Ω(1 + A∗∗) = cS
θ

1
γ

K
1
γL

δ
γ

+ cLL

This cannot be solved analytically unless δ = γ. However, if ∂T
∂S

> ∂T
∂L

at the unconstrained

optimum under high-stakes accountability, then the school will reallocate toward short-term

resources (i.e. focus more on test preparation) in order to move toward the threshold. Since

T = KSγLδ:

(21)
∂T

∂S
= γKSγ−1Lδ;

∂T

∂L
= δKSγLδ−1

Evaluate the derivatives at the unconstrained maximizing values of S and L:

(22)
∂T

∂S
= γK

(
Ω(1 + A∗∗)

cS

(
αγ

αγ + αδ + βζ

))γ−1(
Ω(1 + A∗∗)

cL

(
αδ + βζ

αγ + αδ + βζ

))δ

(23)
∂T

∂L
= δK

(
Ω(1 + A∗∗)

cS

(
αγ

αγ + αδ + βζ

))γ (
Ω(1 + A∗∗)

cL

(
αδ + βζ

αγ + αδ + βζ

))δ−1

Start by dividing both equations by
(

Ω(1+A∗∗)
cS

(
αγ

αγ+αδ+βζ

))γ−1 (
Ω(1+A∗∗)

cL

(
αδ+βζ

αγ+αδ+βζ

))δ−1

;

then ∂T
∂S

> ∂T
∂L

if:

(24) γ

(
Ω(1 + A∗∗)

cL

(
αδ + βζ

αγ + αδ + βζ

))
> δ

(
Ω(1 + A∗∗)

cS

(
αγ

αγ + αδ + βζ

))
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Then divide through by γΩ(1+A∗∗)
αγ+αδ+βζ

, and obtain that ∂T
∂S

> ∂T
∂L

if:

(25)
αδ + βζ

cL
>
αδ

cS

If the costs are equal, the school will always move toward short-term resources if con-

strained, because βζ > 0.

B Data Appendix

B.1 Covariates In Fully-Specified Regressions

The first stage of the value-added model contains the following covariates.

• Individual test scores: standardized 8th-grade math score, standardized 8th-grade read-

ing score, interaction of standardized 8th-grade math and reading scores.

• Individual demographics: black, Hispanic, Asian, female, economically disadvantaged,

limited English proficiency, special education.

• Census block group averages: household income, has a high school diploma, has a

bachelor’s degree, white, black, Asian, Hispanic, married, employed, home owner, below

poverty line.

• School averages: black, economically disadvantaged, 8th-grade test score.

• School-level variables: enrollment.

• Missing indicators for all of the above.

• Cohort fixed effects.

• School fixed effects (variable of interest).

The second stage of the value-added model contains the following covariates.

• Average residualized scores: one year forward, two years forward, one year backward,

two years backward.

• Missing indicators for all of the above.

The Altonji and Mansfield (working) decomposition regression contains the following

covariates.
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• Individual test scores: standardized 8th-grade math score, standardized 8th-grade read-

ing score, interaction of standardized 8th-grade math and reading scores.

• Individual demographics: black, Hispanic, Asian, female, economically disadvantaged,

limited English proficiency, special education.

• Census block group averages: household income, has a high school diploma, has a

bachelor’s degree, white, black, Asian, Hispanic, married, employed, home owner, below

poverty line.

• School averages: black, economically disadvantaged, 8th-grade test score.

• School-level variables: enrollment, per-pupil instructional expenditure, district per-

pupil instructional expenditure, pupil/teacher ratio, fraction of students leaving the

school without graduating, teacher certification exam score.

• Missing indicators for all of the above.

• Cohort fixed effects.

The outcome regressions contain the following covariates.

• Individual test scores: standardized 8th-grade scores in a fourth-order polynomial.

• Individual demographics: black, Hispanic, Asian, female, economically disadvantaged,

limited English proficiency, special education.

• Census block group averages: household income, has a high school diploma, has a

bachelor’s degree, white, black, Asian, Hispanic, married, employed, home owner, below

poverty line.

• School averages: black, economically disadvantaged, 8th-grade test score, attendance.

• School-level variables: enrollment, magnet, charter.

• Missing indicators for all of the above.

• High school value added, expressed in terms of its school-level standard deviation (vari-

able of interest).
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B.2 Subject Abbreviations

The following abbreviations correspond to English courses at the listed institutions:

• “ENG”: Alpena Community College, Central Michigan University, Delta College, Goge-

bic Community College, Grand Valley State University, Henry Ford Community Col-

lege, Jackson Community College, Kalamazoo Valley Community College, Kirtland

Community College, Marygrove College, Mid Michigan Community College, Muskegon

Community College, North Central Michigan College, Northwestern Michigan College,

Oakland Community College, Schoolcraft College, St. Clair County Community Col-

lege, University of Michigan-Flint, Washtenaw Community College, Wayne County

Community College, Wayne County Community College District, Wayne State Univer-

sity, West Shore Community College

• “ENGL”: Bay de Noc Community College, Eastern Michigan University, Ferris State

University, Kellogg Community College, Lake Michigan College, Lake Superior State

University, Macomb Community College, Monroe County Community College, Mont-

calm Community College, Mott Community College, Saginaw Valley State University,

Southwestern Michigan College, The Robert B. Miller College, Western Michigan Uni-

versity

• “DEN”: College for Creative Studies

• “COM”: Glen Oaks Community College

• “EN”: Grand Rapids Community College, Northern Michigan University

• “WRIT”: Lansing Community College

• “WRA”: Michigan State University

• “UN”: Michigan Technological University

• “WRT”: Oakland University

• “ENGLISH”: University of Michigan-Ann Arbor

• “COMP”: University of Michigan-Dearborn

The following abbreviations correspond to math courses at the listed institutions:

41



• “MTH”: Alpena Community College, Central Michigan University, Delta College, Goge-

bic Community College, Grand Valley State University, Jackson Community College,

Kirtland Community College, Marygrove College, Michigan State University, North

Central Michigan College, Northwestern Michigan College, Oakland University, St.

Clair County Community College, University of Michigan-Flint, Washtenaw Commu-

nity College, West Shore Community College

• “MATH”: Bay de Noc Community College, Eastern Michigan University, Ferris State

University, Henry Ford Community College, Kalamazoo Valley Community College,

Kellogg Community College, Lake Michigan College, Lake Superior State University,

Lansing Community College, Macomb Community College, Monroe County Commu-

nity College, Montcalm Community College, Mott Community College, Muskegon

Community College, North Central Michigan College, Saginaw Valley State Univer-

sity, Schoolcraft College, Southwestern Michigan College, The Robert B. Miller Col-

lege, University of Michigan-Ann Arbor, University of Michigan-Dearborn, Western

Michigan University

• “NSM”: Glen Oaks Community College

• “MA”: Grand Rapids Community College, Michigan Technological University, North-

ern Michigan University

• “MAT”: Mid Michigan Community College, Oakland Community College, Wayne County

Community College, Wayne County Community College District, Wayne State Univer-

sity

• “MMTH”: West Shore Community College
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B.3 Appendix Tables

Table 11: College Attendance and Graduation - Probits, College-Ready Sample

Takes ACT Graduates HS Any College In Grade Sample

Scaled High School VAM 0.015*** 0.024*** 0.028*** 0.005
(0.004) (0.004) (0.004) (0.009)

8th-Grade Test Score 0.052** 0.056*** 0.151*** 0.258***
(0.021) (0.022) (0.041) (0.058)

Female 0.006*** 0.015*** 0.045*** 0.032***
(0.001) (0.002) (0.002) (0.003)

Black -0.016*** -0.012** 0.022*** -0.03***
(0.003) (0.006) (0.007) (0.011)

Hispanic -0.021*** -0.023*** -0.012 -0.025***
(0.004) (0.005) (0.008) (0.009)

Asian -0.021*** -0.022*** -0.002 0.036***
(0.003) (0.004) (0.009) (0.011)

Special Education -0.032*** -0.044*** -0.052*** -0.073***
(0.004) (0.005) (0.006) (0.009)

Limited English Proficiency -0.037*** -0.037*** -0.037*** -0.06***
(0.006) (0.01) (0.009) (0.015)

Economically Disadvantaged -0.037*** -0.052*** -0.064*** -0.091***
(0.002) (0.003) (0.003) (0.004)

Block-Level and School-Level Variables? Yes Yes Yes Yes
Number of Observations 115,116 115,116 115,116 115,116

One observation per student. Marginal effects at means shown. There are as many “college-ready” students as have a maximum
ACT composite of 21 or higher; this same number of students is then chosen based on their 8th-grade test score. Value added
is estimated following the method in Chetty, Friedman, and Rockoff (2014), normalized in terms of its school-level standard
deviation. Missing values of covariates are recoded to 0; missing indicators are included but not shown. Bootstrapped standard
errors in parentheses, clustered by high school.
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Table 12: Falsification Tests, Home-District Sample

7th-Grade Score 7th-Grade Attendance Block-Group Pct. In Poverty Block-Group Pct. With BA

Scaled High School VAM 0.054*** 0.003** -0.145 1.92***
(0.007) (0.001) (0.365) (0.583)

Student-Level Variables? Yes Yes Yes Yes
Block-Level Variables? Yes Yes No No
School-Level Variables? Yes Yes Yes Yes
Number of Observations 275,601 276,897 287,348 287,348

One observation per student. Only students who attend non-charter, non-magnet high schools in the district in which they
reside are included. Value added is estimated following the method in Chetty, Friedman, and Rockoff (2014), normalized in
terms of its school-level standard deviation. Missing values of covariates are recoded to 0; missing indicators are included but
not shown. Standard errors in parentheses, clustered by high school.
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