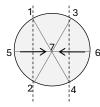
FOLDING THE MEREON MATRIX

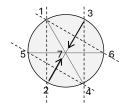
Bradford Hansen-Smith

The Mereon Matrix in 2-D is a bilateral symmetry star, an unbroken line that connects all 7 points of the circle pattern of 3 diameters. Other stars do not have a center point, nor does any inscribed polygon have a center point or any polyhedra except by projected construction. The Mereon circuit is unique, and more so when folded.

The familiar inscribed hexagon is 6 lines on the periphery connecting 6 points, taught as a 6 sided shape, it is the primary outer circuit. There are 2 opposite triangle circuits that individually and together have no connection with the center point. The mereon is a single circuit of 6 lines connecting all 7 points, inside and outside at 60° and 30° between 2 sets of 2 parallel line. The hexagon star combining 2 infolded triangles show a scaled hexagon shifted 30° to the star points.

These 3 fundamental circuits do not exist independent of 3 diameters. Folding the circle show 3 diameters primary to all else that can be generated in the circle. The hexagon star shows 13 areas of division, the mereon star shows 14 divisions in the circle making it of greater magnitude. $(1+3\rightarrow 4, 1+4\rightarrow 5.)$





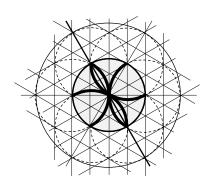
To fold 3 diameters the first fold is in half. The second fold is 1 over 2. Open the circle to see 1 diameter and 2 radii, 5 points in 2 folds. The third fold is 1 behind 2. While looking like 3 diameters, what is folded is 1 diameter and 4 radii; 2 are a reflection of the second fold in opposite directions completing what looks like 3 diameters.

The 3:6 symmetry divides 6 equal sectors reflecting the ratio 1:2 of the first fold. The diameter midpoint is the only point in common to these line segments. Pattern has no scale; it is movement informing on all levels of frequencies beyond the concept of a center point, which has been a useful construction.

Fold point 5 and 6 to the center and crease. Fold opposite points 2 and 3 to the center and crease. Four creases connect all the 7 points with 6 folds.

Freehand stars have no boundary between the star points, lines, and polygons. Without a container there is no organization or pattern directive. The mereon is a uniquely order circuit.

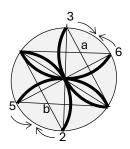
Tracing the 4 folds to get the corresponding curve is the next step in understanding the difference ways these 3 circuits inform the circle pattern.

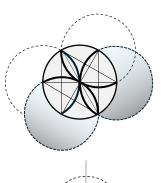

Trace around the 4 folds to the center point. There are 4 intersecting vesica Piscis, 2 petal shapes, one diameter and 4 half-petals. These parts only suggest a complex movement of this single circuit in rotation.

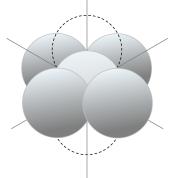
In the 2-D image the curves share the circumference and midpoint of the diameter through rotational movement. The larger part of the circle rotates out from each folded axis making 5 complete circles.

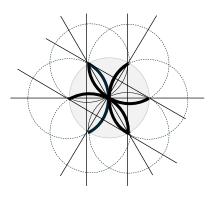
Rotation forms 5 tangent spheres that are the center layer of 13 spheres. The first and third layer are 4 spheres each completing 12 spheres around the center, 13. There are 5 sets of 5 individual spheres where the center sphere is common to all 5 combination of the 3 layers depending on orientation. The Vector Equilibrium is the primary centered system of spherical packing of the same size. The mereon circuit is fundamental to all spherical systems. This is evident by drawing and with folding circles.

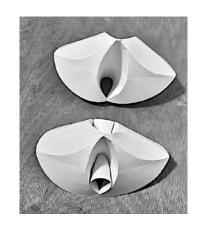
The curved mereon found in the expanded 7 interconnected circles is a rotating circuit. The 3 individual forms of the circle pattern can be separated out, but in doing so we lose the circle context and the source for patterned organization of movement.




The Mereon circuit is found in the full 8-frequency This suggest the mereon as an unseen connection to a torus movement inside and outside in a spatial continuum. This circuit in a minimum of 3 lines shows the symbol relation of pi using both straight and curved lines; one side of the infolded triangle and the 1/3 of the circumference. This inside/outside connection makes room for torus rotation.


Once the 4 folds of the mereon are traced, each curved line is scored with a blunt tool and then folded show the 2-D circle of vesicas and curves becoming 3-D in unexpected ways often difficult to imagine looking at the 2-D image.





Bring points 3 and 6 together, pushing in on intersection a, pulling up on the circumference. Do the same between 5 and 2 pushing in and up from b. This uses both curved and straight folds toether. To the right are 2 variations to this folding.

Above are 2 primary ways to reform the flat mereon design using the 4 traced curves of the 6 folded chords. One is a modified version of the other. All edges and surfaces are curved, there are no straight lines.

Two more variations that can be folded using the same 4 creased curves. They are less obvious than the 2 reformations above.

Lacking straight lines and angles there is nothing to direct how these curved units join together. Determining what works is trial and error, traditional polyhedra are the only guide for arranging multiple units. The differences between straight and curved lines is a question about how to join units in a consistent way the makes sense to each individual system. Starting with 3 as fundamental seems like a place to start.

Using 3 of the second unit in the first picture forms a triangle with hexagon divisions. There are no vertex points for joining the units. These are held together at 3 points joined consistently somewhere on the curved surface. The points must correspond to the same location on all 3 units or regularity and symmetry are lost. Both sides show hexagonal division.

The 4 faces to a tetrahedron suggest using 4 sets of 3 units each from above, again it is trial and error finding the same locations on each curved surface for forming a tetrahedron.

Two individual views of the tetrahedron arrangement. Each unit is joined to the other by single points as found with spherical packing. Joining curved surfaces opens triangular intervals that doesn't happen with flat plane angled vertices.

When points are out of alignment symmetry is lost, the figure becomes distorted with irregular openings, yet still identifyable as a tetrahedron. The irregularities suggest possible a transition, or maybe the natural deterioration of symmetry as the system begins to fall apart.

Irregularity also comes from piecing units together to make a system rather than understanding the order and organization comes from the systemic design. Each circle is whole and carries with it all group possibilities and variations, not unlike the DNA as we presently understand.

Below show a few more ways to join 3 of the above units together in sets of three. Every point on the surface and on the circumference changes the relational possibilities.

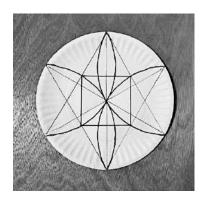
Below are 3 views of another way to join the same 4 sets of 3 units forming a tetrahedron system. Attaching points of each set about half the distance between end points on the circumference brings the 4 sets into balance showing a tetra/octa relationship.

There is a big difference in joining on the circumference and curved surfaces than what we are used to with straight edges and flat surfaces. End points sometimes work, mostly they become double points that don't quite come together as we are familiar with in traditional geometry.

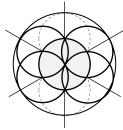
Returning to the first set of 3 units and adding more sets to expand the system became a hit and miss situation. Putting 5 sets together comes close to a pentagon arrangement. Without measurement there is only proportional closeness to gage where the points are for joining the curved surfaces. Joining spheres is without directionality whereas folding the circle reveals order and divisional design that is principle to relationships between discernable parts.


Ten sets of 3 units show the inside pentagon star in the incomplete spherical system. The openness in the individual sets and the open space as they are joined eliminates any fixed boundary between inside and outside.

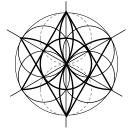
Five more sets are added to show pentagon edges formed by the units edge. Then 5 more sets are added to complete the sphere showing pentagons and hexagons interconnected on the outside with multiple openings to the inside.



The interrelated nature of the hexagon and pentagon can be seen without ridged mapping. The units seem to settle into positions without having to construct relationships. The problem is in finding the points for reasonable connections between all sets that retains spherical symmetry. Spherical division is inherent to organization of movement patterns. It becomes difficult to assemble curved without marks to follow.


This is an unusual icosadodecahedron type system. There are 12 sets of 3 each that form the hexagons where the divisions of 3 forms the relationships showing 12 pentagons of 36 individual units that results in pentagon divisions. There is a lot of strength in this sphere for joining between units with a one point connection

The relationship of 4 folded curves is proportionally consistent as it scales in and out to the hexagon arrangement of 7 points. All the curves are segments of the circumference determined by the length of the folded chords. Scaled inside the mereon is proportionally half and concentric within expansion of that circuit that allows for a torus rotation.



The square is about 4, forming, transforming, reforming, the movement from one state to another. Here the square is revealed in the points of intersection between the straight lines and the curves. There is a consistent over hand inside and out path of movement in a trefoil configuration. The straight and curved lines form a single circuit, one having amplitude and the other showing frequency. This scaling can be seen in the lower right drawing. When folding circles there is no separation between circumference and folded chords.

The square relationship is the interplay between the straight lines of the 2 intersecting triangles and curves that inform the circle. There are 4 folds that reveal the 4 curves; put another way the 4 curves reveal 4 lines of axial rotation.

The Mereon is not source. It is a unique primal sphere/circle circuit connecting 7 locations, outside to inside that seemingly is the only means of distribution possibly for relations between 1 division where 2 is 3 that generate 4 that is 5 spheres patterned to 6 that is 7 complete in the 8 of the first fold of the circle that is 3 to itself 9. $(3 + 9 \rightarrow 12 \rightarrow 3)$

The Mereon is complete, an unrecognized connection as a toroidal circuit of energy flowing in and out through the center viewed on a flat plain. It has been missed for the same reasons we do not fold the circle; space and movement don't exist in 2-D. Simulating images in a binary system does not leave room for moving between. Dynamic relationships are lost in measuring polygons and in the classification of polyhedra.

The Mereon circuit is a pattern of movement, there is no fixed center or fixed points of intersection. The center is a conceptual left-over from flat thinking with a compass, therefor projecting points where there is a scaled location of space.

Numbers 3 and 4 are not separate in the linear way we used them. We draw triangles and squares separated by symmetry. The VE is both squares and triangles without separation . Four tetrahedra joined at a common location form the VE where what holds them together is the space between them. There are 4 opposite tetrahedra intervals that form 6 square intervals between the 4 tetrahedron that go unnoticed when we count external points and project a center. Maybe this is why B. Fuller removed the center point to demonstrate the "jitterbug" movement of the outside without the VE having a traditionally defined center.

3:6 symmetry comes first before 4: 8 symmetry. Yet the numbers 1-9 are all in the first fold of the circle in half. The 3 and 7 are the third number in from both ends of the sequence leaving 4, 5, 6 in between, all adding up to 9. Three diameters are 7 points; there are 4 radii with 8 points 2 points are the diameter. The diameter reveals 10 points showing relations of 2 tetrahedra, where the 5 points of the second fold when reformed are tetrahedral. The 5th point location is traditionally call a center point because of the compass and dividing the circle into quarters. Numbers are use to describe how we see things, having to do how we take things apart and map them on a flat plane.

All mechanical levels of energy are consistently interconnected through unimagined frequencies non-separatable on a continuum of a single movement. Life on every level has odd and even functional compliments. The adaptive and the mechanical laws of regulation work together; consciousness is the adaptive the third component. Pattern moves through formative stages evolving meaning through greater individual self-awareness and collective source fulfillment that is in place to be recognized.

Another way to see the scaled growth between the folded chords and the curves as perpendicular functions of dual symmetry. There 4 formed pentagons, 2 outside of the square and 2 inside the square each to different propertions, just as the corresponding triangles are differently scaled inside and outside.

While there is beauty in these flat designs they represent isolated distortions that occur when dynamic systems are compressed to a fixed single perspective on one plane. There is no reason not to believe the mereon pattern of movement cannot take any configuration necessary to conform to all the circle can generate.

Going back to the unit used above looking at another way to join units that was initially missed and becomes instructive to the transpositions of reconfigured circles.

Every curve inside the circle is a sector of the circumference regardless of length or differences in surface curvatures. This suggest inside and outside are from the perspective of how we read the properties of a specific form. If we are to get a better idea of the interconnected dynamics that holds consistent to the function of pattern formation, then we must look to the unobserved reality between configurations.

Three views of the mereon units in the above configuration joining the outside curvature to the same inside curvature of the preceding unit which naturally forms this helix form. There are other ways to differently combine inside to outside curves using the circumference that form other kinds of configured systems. Every unit in the helix is an individual mereon circuit that becomes a neural connection from outside to inside curvature by alignment of edges as it moves forward.

The Mereon circuit moving as a single unit through time where inside and outside are relatively manifestations seen in multiples as individualized systems; examples being spheres, helices, and growth spirals. We miss the dynamics, the relationships of movement that connects physical forms. This eliminates seeing patterns of movement that creates formed objects and the perception of inside and outside boundaries that appear to travel through time.

Looking at the connections of 7 points of 6 lines on a flat plane suggest a number correlation to 13 spheres, generalized as 13 points of the VE. The unseen connections between all point locations in the circle to sphere movement are too many to even think about, they are the transpositions for changing possibilities. The Mereon is a fractal process of energy movement revealing countless manifestations that occur within the whole within each part.

While this seems to work on physical levels of reality, on deeper levels of conscious recognition there is no separation of inside and outside, it is more about spatial movement bringing into focus in time to manifest what appears separated. With misalignment there is a lack of connection to Wholeness. We are stuck in the outer circuits lacking the inner connections necessary to make the outer possible. Aside from the formal manifestations are the philosophical, semireligious, and spiritual nature that all have some energy counterpart, otherwise we would have no idea about them.

An analogy might be folding the circle to get a half circle, to see the line of division is the 3rd aspect, to then notice points are touching, realizing the circumference is moving 360°, and that everything in the circle is contained in that spherically rotating envelope. One single wholemovement.