A SAFE ICE LOAD METER AND A MOTOR-DRIVEN CORING TOOL
FOR ESTIMATING THE BEARING CAPACITY OF AN ICE SHEET
FOR TRANSPORTATION PURPOSES

J.G. Willmot, Engineer, Research Division,
The Hydro-Electric Power Commission of Ontario, Toronto, Canada.

ABSTRACT

The Safe Ice Load Meter is an inexpensive portable unit for use by
vehicle drivers. Meter readings of safe load are obtained in terms of
thickness of clear ice, thickness of white ice, crack conditions and number of
days of thawing weather if any. The motor-driven coring tool, powered by the
vehicle battery, provides 2 1/2 inch diameter cores in ice up to 4 feet thick.

INTRODUCTION

The Safe Ice Load Meter and the Coring Tool were developed to enable the
driver of any vehicle to determine whether or not the ice on a frozen lake or
river would carry his vehicle safely. Earlier estimates by people concerned
with this problem, were generally based on ice thickness alone, sometimes with
fatal results. In recent years both military and industrial needs in Canada,
the U.S.A. and the USSR have resulted in the carrying out of research and the
collection of experience data related to this problem. The information obtained
showed that besides ice thickness there were several other factors having a
significant effect on the bearing capacity of an ice sheet. However, the
application of much of the information would have been beyond all but engi-
neering specialists. Following an ice accident in which five Ontario Hydro
linemen lost their lives at Minaki in 1957, the task of collating the best
available information and presenting it in a form suitable for field use was
undertaken. The requirements imposed on the manner of presentation were
restrictive: any vehicle driver or foreman should be able to determine safe
ice load without the use of mathematics and with little instruction; the
method should be neither time-consuming nor laborious; all significant factors
that can be readily recognized should be taken into account; there should be
a built-in factor of safety to allow for variations in ice quality which are
not readily recognized and to allow for human error.

The methods considered included sets of graphs, sets of tables, nomograms,
and a special slide rule. All of these were rejected for various reasons in-
cluding the possibility of error, and not omitting psychological aspects. The
final decision was to build a "meter" which would give a reading of safe ice
load in tons merely by setting controls in terms of readily determined condi-
tions such as thickness of clear ice.
Operation of the SAFE ICE LOAD METER MODEL SL-1:

The resulting SAFE ICE LOAD METER is shown in Figure 1.

Step-by-step instructions for operation of the meter are contained in the instruction sheet and are readily carried out. The instruction sheet is reproduced in Figure 4. With the exception of vehicle speed, all of the principal conditions which determine safe ice load are accounted for by four controls across the bottom of the panel. Starting from the left, the user sets the first control to the number of inches of clear ice, this information being found by obtaining an sample with the coring tool described later. A typical ice sample might have 10 inches of clear ice with 4 inches of white ice on top. The clear ice is frozen lake water, and the white ice is frozen snow slush. After examining the proposed ice road for the presence of open cracks, and comparing the path which the vehicle will follow with the crack situations lettered A to E shown at the right of the instruction sheet, the user sets the third control, CRA ALLOWANCE, to the appropriate lettered position.

The latter control is also used to allow for ice shrinkage. When water...
ONTARIO HYDRO SAFE ICE LOAD METER
MODEL SL-1

INSTRUCTIONS:
1. SET CLEAR ICE CONTROL TO THICKNESS OF TRANSPARENT ICE IN INCHES
2. SET WHITE ICE CONTROL TO THICKNESS OF MILKY ICE IN INCHES
3. SET CRACK ALLOWANCE
 (A) UNTIL AIR TEMPERATURE RISES 10°F ABOVE LAST LOW, SET CRACK ALLOWANCE TO E
 THIS CONDITION USUALLY APPLIES TO EARLY MORNING AFTER A COLD NIGHT.
 (B) AFTER AIR TEMPERATURE FALLS TO 10°F BELOW LAST HIGH, SET CRACK ALLOWANCE TO E
 THIS CONDITION USUALLY APPLIES FROM LATE AFTERNOON ONWARD.
 (C) IF CRACK ALLOWANCE E IS NOT REQUIRED AS IN (A) OR (B) THEN SELECT A CRACK ALLOWANCE
 FROM THE SKETCHES OF VEHICLE AND CRACK SITUATIONS AT RIGHT. THESE ARE WET, OPEN, OR UNHEALED
 CRACKS. DISREGARD HAIR CRACKS AND HEALED CRACKS.
4. SET CONTINUOUS DAYS OF THAW TO NUMBER OF CONSECUTIVE DAYS THAT AIR TEMPERATURE HAS BEEN
 AT 32°F OR OVER. THIS CONDITION USUALLY APPLIES TO LATE WINTER. DURING MOST OF THE WINTER THERE IS
 NO THAW AND THE SETTING SHOULD BE 0.
5. SET OFF SWITCH TO CHECK
6. SET CHECK ADJUST TO MAKE THE METER READ 40
7. SET OFF SWITCH TO TONS
8. READ SAFE LOAD IN TONS FROM METER
9. SET OFF SWITCH TO OFF
10. READ MAXIMUM SAFE SPEED FROM TABLE

<table>
<thead>
<tr>
<th>DEPTH OF WATER, FEET</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX. SAFE SPEED MPH</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>

NOTES:
1. THE SAFE ICE LOAD METER PROVIDES A FACTOR OF SAFETY OF 2.0 COMPARED TO COMMON PRACTICE IN THE
 LUMBER INDUSTRY. UNDER EMERGENCY CONDITIONS THE LOAD MAY BE DOUBLED AFTER A CAREFUL CHECK OF ICE
 THICKNESS AND CRACKS.
2. WHAT TO DO IF THE ICE CRACKS UNDER YOU
 (A) SEVERAL CRACKS - VEHICLE STANDING STILL: MOVE IT, SLOWLY, IN LOW GEAR
 (B) SEVERAL CRACKS - VEHICLE IN MOTION: SLOW DOWN TO 2 MPH. IF CRACKING CONTINUES READ
 FOR THICKER ICE AT 2 MPH
 (C) ONE LONG CRACK - STRADDLE CRACK AS IN SKETCH B AND KEEP MOVING AT 2 MPH. IF THE
 SAFE LOAD METER INDICATES THAT THE ICE WILL SUPPORT YOUR VEHICLE USING CRACK
 ALLOWANCE E, THEN YOU CAN SAFELY DRIVE AWAY FROM THE CRACK. OTHERWISE, CONTINUE
 TO STRADDLE THE CRACK AND FOLLOW IT TO SHORE.

FIGURE 2
freezes, expansion takes place, but with cooling of the ice below the freezing point, contraction takes place. Falling air temperatures therefore cause the ice sheet to contract horizontally, and since the ice is frozen to the surrounding shores and is weak in tension, it cracks. While the water entering the cracks may freeze and heal them, additional contraction and cracking will continue as long as the air temperature is falling. Further, while an East-West crack will relieve the tension in the North-South direction, it is likely the additional cracks will form as a result of tension in other directions. Therefore, during the period between the time when the air temperature has fallen about 10°F, until it has passed through a low and risen about 10°F from that low, it must be assumed that the ice either has cracked or is on the verge of cracking. It is therefore assumed that whether or not cracks are in evidence during the above temperature conditions it is likely that the vehicle could either come upon or trigger crack condition E, which is two cracks intersecting at an angle of 45° and which reduces the safe load to 12 per cent of the no crack safe load. The temperature conditions just described usually apply to the period from late afternoon on to 8 or 9 o’clock the following morning.

After setting the CRACK ALLOWANCE control for the observed crack conditions or for falling air temperature effects as described above, the user then sets the fourth control, CONTINUOUS DAYS OF THAW, to the number of consecutive days that the air temperature has been at 32°F or over. This condition usually applies to late winter only, and takes into account the gradual weakening of the ice which occurs with mild weather.

This completes the control settings, viz.: thickness of clear ice, thick of white ice, crack allowance, and days of thaw. The user then sets the cent knob at the right to CHECK, standardizes the internal battery by setting the CHECK ADJUST control to make the meter read 40, and then sets the centre knob at the right to TONS. The meter then indicates the SAFE LOAD in TONS. The reading so obtained provides a factor of safety of at least 2.0 over values commonly used in the lumber industry.

A table of tare weights of vehicles used by the Ontario Hydro is provided as a slip-in card at the left of the meter panel.

Included in the instruction sheet is a table of water depths vs maximum safe vehicle speed. The need for this speed restriction comes from the fact that when a load is placed on the ice, the ice deflects downwards and produces a moving wave in the water beneath the ice. The speed of the wave is mainly dependent on the depth of the water and can be taken as

\[v = \sqrt{gh} \]

where:

\[v = \text{velocity of wave, feet per second} \]
\[g = \text{the acceleration due to gravity, i.e., 32 feet per second per sec} \]
\[h = \text{depth of water, feet} \]

As the wave spreads out it diminishes in height both because of spreading and because of frictional losses. When a vehicle moves, it continuously puts energy into the wave. Provided that the wave is moving substantially faster than the vehicle there is no dangerous build-up of wave height. If the vehicle moves at or near the same speed as the wave, the wave will build up to such a height that it can cause the ice to break, usually beneath the rear wheels of
the vehicle. Model tests performed by the author indicate that the downward deflection of the ice sheet increases rapidly when the speed of the vehicle exceeds two-thirds of the wave speed. The table of water depths and maximum safe speeds given in the instruction sheet limits the vehicle speed to two-thirds of the wave speed.

The instruction sheet also states what action should be taken in the event that the ice cracks beneath the vehicle. A parked vehicle should be moved slowly. When several cracks form under a vehicle moving on ice whose thickness has been measured and found adequate, the cracking is likely due to the wave action described above, and the driver should slow down. If a long crack forms under the vehicle, it is probably due to thermal contraction. Since the ice will support more load when the vehicle straddles the crack than if the vehicle is on one side of the crack only, the driver should continue to straddle the crack and follow it to shore. It would not be a good risk to attempt to drive away from the crack unless it was known beforehand that the ice was sufficiently thick to support the vehicle under crack condition E (i.e., two cracks intersecting at 45 degrees).

Principles and background of the SL-1

The METER is actually a form of analogue computer, a fact not normally mentioned since most prospective users know that they cannot operate a computer but that they can set a knob to the number of inches of clear ice. The equation solved is:

\[P = 0.042 \left(h_c + 0.5h_w \right)^2 \times C_1 \times C_2 \](2)

where:

\[
P = \text{safe load in tons.} \\
h_c = \text{thickness of clear ice with values from 0 to 36 inches.} \\
h_w = \text{thickness of white ice with values from 0 to 36 inches} \\
C_1 = \text{crack factor with values between 1 and 0.12} \\
C_2 = \text{thaw factor with values between 1 and 0}
\]

The terms in equation (2) are arranged in the same order as the controls on the front panel of the METER. If there are no cracks and there has been no thawing weather, both \(C_1 \) and \(C_2 \) are equal to 1.0 and therefore have no effect on the first part of the equation. It is thus seen that in the absence of cracks and thaw the safe load is obtained by multiplying a constant (0.042) by the total effective thickness \((h_c + 0.5h_w)^2 \). Since \(C_1 \) and \(C_2 \) are never greater than 1.0, it is also seen that the effect of cracks and/or thaw is to reduce the magnitude of the safe load determined by the first part of the equation.

It must be pointed out that the above equation is an approximation. Theoretical relationships intended to be exact have appeared in the literature but were rejected here because of their complexity which rendered them unsuitable for field use and, in view of the fact that because of the variable properties of ice, any computation of bearing capacity can be considered as an estimate only. The basic relationship consisting of multiplying a constant by the square of the effective ice thickness is recommended by Gold and by Korunov. The constant embraces the elastic properties of the ice, the strength of the
ice, and the buoyant support of the water. If the strength of the ice could be readily determined in each situation, the constant could be appropriately adjusted to give the maximum safe ice load for that particular ice sheet. Korunov related the strength of the ice to the air content, with the result that constant varying from a maximum of 0.12 for clear ice containing only small isolated air bubbles, to a minimum of 0.015 for granular sludge ice. The value 0.042 chosen for use in the SAFE ICE LOAD METER corresponds to clear ice having an air content midway between "thin short vertical air tubes" and "thick long vertical air tubes". As a result of this choice of constant, the user does not have to be a skilled judge of air content to determine safe ice load. The "thick long vertical air tubes" look like pencil stubs. Their presence makes it obvious that the ice should not be trusted. It should be reiterated that the SL-1 was designed for use by any vehicle driver. For applications where a more critical appraisal of the air content could be assured, either the safe load reading from the SL-1 could be scaled upwards for ice with low air content, or the instrument could be modified to include a control which would be set in terms of air content.

As evidence of the practicality of the 0.042 value of the equation constant as used in the SL-1, comparison can be made with ice failure data published by Gold. Of 45 instances of vehicles breaking either partly or completely through the ice, 13 would have either certainly or likely occurred had the safe ice load been estimated using a constant of 0.042 without regard to any other factors. In 11 of these 13 cases, the data recorded indicate that the breakthrough was due to the effects of speed, cold-weather contraction, cracks, or thaw. In the remaining two cases there were insufficient data to indicate the cause of failure. From this it is concluded that the combination of the 0.042 constant and the allowances made in the SL-1 for the above effects can result in ice travel with a high degree of safety.

The summation of the thickness of clear ice and one-half of the thickness of white ice to give effective ice thickness is given by Gold as normal practice in the lumber industry although there is no indication that its accuracy has been verified by any laboratory tests.

The crack factor C_2 was taken from the work of Black who showed that if uncracked ice sheet had a load rating of 100 per cent, then 24 per cent load could be supported on one side of a long crack, approximately 25 per cent load could be supported between two cracks meeting at 90 degrees, and approximately 12 per cent load could be supported between two cracks meeting at 45 degrees. The effect of falling air temperatures in producing cracks was obtained from observations made by the author in an investigation of ice pressure on dams.

The thaw factor C_2 consists of a reduction in strength of 5 per cent per day for every consecutive day of continuous air temperature at 32°F or over and appears in papers by Korunov and by Bergman and Proskurinikov.

How the SL-1 computes:

The component layout of the SL-1 is shown in Fig. 3 and the circuit diagram is given in Fig. 4.
The circuit is quite simple and the manner in which it adds, squares and multiplies is readily explained. There are no tubes or transistors. Aside from the battery, switches and meter, the only components are a few fixed and variable resistors. The order in which several quantities are multiplied together has no effect on the product. Therefore, for the sake of clarity, in the title to Fig. 4, the order of quantities in equation (2) has been changed to be in the same order as the operations performed by the circuit.

Current from the battery produces between points 1 and 3 a voltage drop which is equivalent to the 0.042 portion of the equation. Multiplication by the fractional constant C_2 is accomplished by adjusting point 2 to the number of days of thaw, the product $0.042 \times C_2$ appearing between points 2 and 3. Note that R_3 and R_2 are ganged, and constitute the inches of clear ice control. The desired value of R_3 was not commercially obtainable, and therefore R_4 was introduced to reduce the resistance of an available control to the desired value. Also note that R_6 and R_7 are ganged and constitute the white ice control. The $0.042 \times C_2$ voltage appears between points 4 and 9. If a fraction (a) of this voltage is taken between points 5 and 6, and a fraction (b) is taken between points 7 and 8, then the total voltage appearing between points 5 and 8, and hence between points 10 and 15, will be $0.042 \times C_2 \times (a + b)$. Because of the ganging of controls mentioned above, of the voltage between points 10 and 15, there will be a fraction (a) between points 11 and 12, and a fraction (b) between points 13 and 14. Hence the total voltage between points 11 and 14 will be $0.042 \times C_2 \times (a + b) \times (a + 0.042 \times C_2 \times (a + b) \times (a + b)$, which is $0.042 \times C_2 \times (a + b)^2$. Here, of course, the fraction (a) is equivalent to h_3, and the fraction (b) is equivalent to $0.5h_w$. The reason why fraction (b) is equivalent to $0.5h_w$ even though R_3 and R_6 are both graduated from 0 to 36 inches, is that R_6 is chosen to have one-half of the
FIGURE 4

SCHEMATIC DIAGRAM OF SAFE ICE LOAD METER MODEL SL–1
CIRCUIT SOLVES $P = 0.042 \times C_2 \times \left(H_c + \frac{H_t}{2} \right)^2 \times C_1$ TONS
resistance value of R_3. Similarly R_7 has one-half of the resistance of the R_4R_5 combination. Therefore, for a given rotation of the white ice controls, only one-half of the voltage is obtained that is obtained for the same rotation of the clear ice controls.

From points 11 and 14, the voltage is applied to the moving coil meter through R_8 which is the crack allowance control, and the R_9, R_{10}, R_{11} combination chosen to result in the desired meter sensitivity. When R_9 is at position A, ($C_1 = 1$), it has no effect on the circuit. When R_9 is at position E, ($C_1 = 0.12$), it reduces the meter sensitivity to 12 per cent. This completes the computation process.

During the actual reading, switch S_1 comprising S_{1A}, S_{1B}, S_{1C} is, of course, in the TONS position. Just prior to the reading, switch S_1 is set to the CHECK position which connects the meter across R_2 and permits the R_{1A}, R_{1B} combination to be adjusted to compensate for battery aging. The standard reading so obtained is 40 on the 0-50 scale of the meter, R_{12} having been selected to give that reading.

The Motorized Ice Coring Tool

In any computation of safe ice load, adequate determinations of ice thickness and general quality are mandatory and therefore a coring tool is also mandatory. The requirements imposed on the design of the coring tool to be used with the 5L-1 were that it should be easy to use so as to encourage thorough use, maintenance should be low and readily carried out with normal shop facilities, and parts should be easy to obtain.

Top and bottom views of the resulting tool are shown in Figs. 5 and 6. A core having 2 inches of white ice and 5 inches of clear ice is shown in Fig. 7. The coring tool cuts 2 1/2 inch diameter cores in ice up to 4 feet thick at a rate of 2 to 3 feet per minute.

During coring, some of the ice shavings enter the tube and usually some water enters the tube upon completion of the cut. In Fig. 7 a ramrod type clearing tool is shown being used to remove shavings frozen to the inside of the tube. In this connection it has also been found helpful to swab the inside of the tube with an oil-soaked rag before starting the day's coring operations.

The motor is a 12-volt automobile starter motor. Extension leads 50 feet long with battery clips are used to power the motor from the battery of a light vehicle used to survey the proposed ice road. A thumb switch and automobile starter solenoid are used to control the motor. To avoid inadvertent operation, a safety switch at the end of a 6-foot extension lead is connected in series with the thumb switch. A fish-eye bubble level mounted beside the motor assists the operator in keeping the tool plumb.

The spiral feed on the outside of the cutting tube brings the cuttings to the surface of the ice sheet. Details of the cutting head are shown in Fig. 8. Bottom cutter A which projects 1/8 inch inside the tube, makes the initial cut, and provides clearance between the core and the inside of the tube. The hole cut by A also provides a side-to-side bearing surface for the cutting head so as to eliminate side-to-side vibration. Top cutter C widens the cut to eliminate any possibility of jamming upon removal from the hole.
Fig. 5 - Top of coring tool. Automobile starter motor, solenoid, thumb switch and fisheye level are mounted on cross bar.

Fig. 6 - Coring tool entering ice. Safety man at right holds cord switch which overrides thumb switch on coring tool.
Fig. 7 - Ice core having 2 inches white ice and 5 inches clear ice. Clearing tool being used to remove ice cuttings from inside of tube.

Fig. 8 - Details of cutting head of ice coring tool (see text).
Some slight differences will be noticed between the photographs and the reduced scale drawings of the ice coring tool as given in Figs. 9 and 10. Fig. 10 shows bottom cutters A and B, whereas Fig. 7 shows that bottom cutter B has been removed. Subsequent experience has shown that both bottom cutters are desirable. Further, Fig. 7 shows mounting holes for two top cutters C. However, as indicated by Fig. 10, only one top cutter is necessary. Finally, as indicated by the spiral feed, the coring tool shown in the photograph was designed for conventional clockwise rotation. This feature was incorporated in the pilot model as a matter of safety since it was felt that at least until some operating experience had been gained, rotation should be in the direction in which the operator would most likely expect. Experience showed that the coring tool was extremely easy to handle. Since clockwise rotation had required that the motor be reversed, which was a factory job, then both as an economy measure and to facilitate servicing, the second model was made as shown in Figure 10 for counterclockwise rotation using an off-the-shelf motor.

Acknowledgements:

The author wishes to acknowledge the contributions of the researchers whose names appear throughout the text and whose works are contained in the list of references. Particular tribute should be paid to the work of Mr. L. W. Golder and the National Research Council of Canada whose continuing efforts are doing much to increase the available useful knowledge of ice travel. The author also wishes to acknowledge the work of Mr. J. T. McKinnon and those other members of the Ontario Hydro staff whose efforts and suggestions have contributed to the successful development of the equipment described in this paper.

References:

(4) "Investigation of Construction and Maintenance of Airdromes on Ice, 19 Selected Excerpts from Ice Crossings". G. R. Bergman and B. V. Proskuriakov, Trudy Nauchno-Issledovatel'skii Uchebshenii, Seriia IV, Gidrometeorizdat, Moscow, 1943. SIPRE translation distributed as PB 111686 by Office of Technical Services, United States Department of Commerce.