THE DEVELOPMENT AND ROLES OF THE EASTERN SNOW CONFERENCE
(with an Index to and Classification of the Proceedings 1952-1984)

by

Peter Adams
Watershed Ecosystems Program, Trent University, Peterborough, Ontario K9J 7B8
and Association of Canadian Universities for Northern Studies
with
Barry McArthur
Department of Geography, Trent University

ABSTRACT

The Eastern Snow Conference is a U.S. - Canadian organization, founded in the late 1930's, devoted to the study of ice in all its common forms, notably snow. It began in the United States as a counterpart to the Western Snow Conference (which is now over 50 years old) and to the short-lived Central Snow Conference. For many years now, it has met in Canada and the States at alternate years. Although the principal function of the group is the organization of an annual conference, it might better be called the Eastern Snow Association as its functions include the activities of various standing committees, notably the Equipment and Snow Survey and Research committees which work year-round. It can be argued that the word "Conference" in the title of the organization is used in a sense which is closer to that in certain sports - as in, for example, a football conference. The territory of the ESC is eastern North America but it would be difficult to draw a line through the Midwest and Prairies to mark its western limit.

This paper was conceived as an appropriate contribution to the development of the Eastern Snow Conference during a year in which one of the authors was President. The idea is to bring together and tabulate some of the information which is available in the Proceedings, of which there are now some thirty volumes. These Proceedings represent a remarkable contribution to ice, including snow, science and technology. The paper concludes with an index and subject classification of all papers in the Proceedings to date.

Introduction

Let it be said at the outset that the term "Eastern Snow Conference" is misleading. The word 'Conference' in this context, is used rather as in the expression 'football conference'. It means 'association' even though the principal activity of this particular association is the organization of an annual conference. This paper is being presented at a conference of the Eastern Snow Conference! The use of the word 'snow' in this title is also misleading as (see below) the association, from the beginning, has been devoted to the science and technology of many forms of ice, not simply snow. Indeed it can be argued that more of the association's time and energy have been devoted to ice forms other than snow than have been devoted to snow itself. The word 'Eastern' is vague, and misleading. It is difficult to define and it is not a word which easily evokes such important parts of the territory of the Eastern Snow Conference as Baffin and Ellesmere Islands. Presentations at meetings have been made by people from as far west as California and as far east as Belgium.

To paraphrase the Forewords to various Proceedings, the Eastern Snow Conference is a more or less informal group of businessmen, engineers, foresters, hydrologists, scientists and educators, mainly from the eastern United States and Canada, which meets annually at locations in the eastern United States and Canada. The purpose of the meetings is the inter-change of information related to "snow, ice, frost, hail and other phenomena" associated with cold weather or climate. The association publishes an annual Proceedings of its deliberations.

The history of the ESC is summarized in a most effective fashion by Lassing (1982). We rely on this article for general background information.
The first meeting of the ESC was held in 1939/40 and meetings continued after the War. The first volume of the Proceedings is based on papers presented at the 1952 meetings, at what was the ninth official meeting of the group.

Although Proceedings have been published for every meeting since then, some volumes contain papers from two meetings so that the 1983 Proceedings (the latest to be included in this analysis) were Volume 28.

The early history of the ESC overlapped with that of the Western Snow Conference which has had meetings and published Proceedings since 1933 (see Henderson 1982). Our 1982 Proceedings are in fact a volume representing a joint meeting of the two groups to mark the Fiftieth Anniversary of the Western Snow Conference (WSC). Although the WSC is the senior partner here, Lansing (1982) carefully points out that the first formal snow survey work was undertaken in the East (in 1903) although Dr. J.E. Church of the University of Nevada, a powerful influence on the WSC, is rightly regarded as the 'father' of this particular type of snow work. For many years the WSC was a chapter of the American Geophysical Union and published its Proceedings via that organization. It is possible that the ESC had a similar affiliation in its very early years.

In the early days also, there was a Central Snow Conference but it lapsed after producing a few Proceedings. It has been suggested that there is insufficient snow in the Mid West or the Prairie Provinces to sustain such an organization! This is a doubtful argument on a number of counts: (1) the contributions of authors from those regions to meetings of both the ESC and the WSC have been numerous, (2) scarcity of snow can heighten interest in it - as our water forecasting colleagues know, and (3) as has been explained, 'Snow Conference' is a misnomer and the central part of the continent certainly has enough ice problems to keep up interest in this subject area. A CSC addendum follows this paper.

However, for whatever reason, the ESC and the WSC nowadays, saw off the continent between them. The line down the middle is not evident to the human eye, rather it shifts according to the interests of our Central colleagues, tending, we suspect, to result in more of them attending meetings of the ESC than of the WSC. There is a long history of links between the two Conference.

Overview of information in the ESC Proceedings

The Proceedings contain a great deal of information which might one day be of interest to historians of science and technology. Particular volumes include lists of delegates and their affiliations, notes on current activities and problems, exchanges between the ESC and the WSC etc. Some of this information is tabulated in Table 1.

The ninth official meeting of the ESC, upon which the first Proceedings are based, was held in Springfield, Mass. in 1952. There were seventy people in attendance.

Early volumes of the Proceedings contain a good deal of information about the organization and rationale of the Conference. The constitution is published, dues are levied for the first time, there was a great deal of attention paid to the site of annual meetings, to expanding and diversifying membership etc. etc. Virtually all of the early meetings were in New England, although members were drawn from a much wider area. There were discussions about this culminating in the early 1960's with the policy of alternating meetings between the United States and Canada.

Over time, various ongoing activities became institutionalized, the Research Committee, the Equipment and Snow Survey Committees and the Student Prize all came into formal being in the 1960's and early 1970's.

In the early years it was normal for the meetings to include rather less than ten papers (although there were twenty seven at Quebec City in 1963). Since the late 1960's this has tended to become ten or more with a marked increase in recent years.

Attendance at meetings has varied but a total of between fifty and one hundred has been typical for decades out of a membership of between one hundred and two hundred.
The meetings were held in February until 1979 when, over the dead body of one of the authors of this article, they were shifted to June. Supporting arguments for the move included snowstorms and the interests of spouses. Can you imagine the National Sunbathing Society moving its meetings to the winter to avoid the sun?

With regard to 'Canadian content', it is clear that the ESC was consciously bi-national from the beginning. Although the formal alternation of meetings and sharing of officers between the two countries came somewhat later, Volumes two and three of the Proceedings were published by Ontario Hydro and the Shsawigan Power Corporation, Quebec, respectively. These two organizations had a very high profile in the early days of the Conference. In 1963, a very large meeting was held in Quebec City. It is interesting that the WSC appears to have been less obviously bi-national (see Henderson, 1982). Perhaps this reflects the dominance of Americans in the Arctic there (via Alaska) and the relatively sparse population of Western Canada in contrast to the East. In the East, subarctic and Arctic papers are produced by both Canadians and Americans, and of course there has been a shared concern in ice problems of the St. Lawrence and its Seaway and in the Baie James and Churchill Falls Power Projects etc. etc.

The most southerly meetings of the ESC were held in Washington, DC, the furthest north in Quebec City. There have been no meetings in the Arctic and subarctic. The furthest east meetings were held in Fredericton, NB, the furthest west, if we exclude Reno in 1982, in Toronto.

Officers of the Eastern Snow Conference

Table 2 was produced from the title pages of the Proceedings. Until 1966-67 there were six people on the Executive, since then there have been seven, the addition being at first a Member-at-large, later the Editor of the Proceedings.

Although in the first year (1951-52) there was a clear dominance of government employees, there was a healthy split between the private and public sectors for the first 20 years of the Conference's existence. During that time there was only token representation from the educational sector, no representation at all in some years. Beginning in 1971-72, there was a marked reduction in private sector officers, their place being more or less filled by educational sector persons. In the early years, the private sector officers were largely drawn from power companies.

The sequence of Presidents reflects the pattern outlined in the last paragraph. Early Presidents included several from water power companies plus strong representation from the USGS, the Corps of Engineers, and the Weather Bureau. The first President from the educational sector was Elmer W. Jusco of Norwich University, Vermont, in 1963-64, the next was Raymond Falcero of SUNY, Albany and there are three more from the educational sector in the last ten years of the table.

There were no Canadians on the Executive in 1951-52, but thereafter it is clear that the ESC has tried to maintain its bi-national character. H.M. Finlayson of Shsawigan Power Company (1954-55) was the first Canadian President followed eight years later by L. Cartier, of Cartier and Leclerc Limited. Since 1971-72, following two years with Canadian Presidents, there has been a practice of alternating Presidents between Canada and the United States. There has usually been a very reasonable split between Canadians and Americans on the Executive with Americans dominating in most years.

The first Secretary was Dean Bogart of USGS, Albany, NY. He occupied the post from 1951-1957. The next two Secretaries were Gordon R. Ayer (1958-1974) and Ron Allen (1974-78, Treasurer in 1979-80). Gordon Ayer, who also came from the USGS at Albany, was one of the most important influences on the Conference during its history, remaining as Secretary Emeritus until his death. Bob Sykes of SUNY, Oswego, was Secretary or Secretary-Treasurer from 1978-1981 when Don Dunlap, now a consultant, having retired from Rutgers University, a former President, took over until the present day.

It would appear that the Presidents of recent years are more diverse, in terms of their backgrounds than those of earlier years. This reflects a diversification of Conference
interests into the broader fields of snow and ice research which is discussed below.

Authors of the Eastern Snow Conference

The private sector/government mix of authors (Tables 3 and 4) is quite similar to that of Presidents. The educational sector, although not represented in the very first year, is more or less consistently represented throughout (except Volume 12) becoming particularly notable during the last ten years when it has tended to dominate.

Interestingly enough, the first paper delivered at an Eastern Snow Conference by an author from the educational sector was that of a Canadian (Volume 2). In only six of the twenty-eight volumes do Canadian authors outnumber Americans with Canadian papers outnumbering American ones in nine out of the twenty-eight cases. To an extent this is affected by the location of the meetings.

Another feature of Table 3 is the increase in the number of papers delivered in any one year which was mentioned earlier. In the early years five to ten papers per meeting was the norm, today twenty or more are not unusual. Part of the reason for this was the introduction of Poster Sessions in 1980.

In recent years, the prize-winning Student Paper has become a feature of each Proceedings.

Topics treated at ESC meetings

An overview of topics addressed by authors at ESC meetings can be gained from the Index and Subject Classification which follow this article.

The diversity of topics is notable. It is clear from these listings why 'Snow' is misleading in the name of our organization. Even in the very earliest years, the power corporations, which were important instigators of the ESC, were very interested in phenomena such as frazil and anchor ice. Thereafter topics have reflected the full spectrum of interests in ice across eastern North America. From glaciers and permafrost in the empty north to road clearing and building loading in the crowded south, from cable icing on the top of Mt. Washington to sea ice in the St. Lawrence and elsewhere. From forest and mountain snowpacks, via river ice jams to lake phenomena including the lake effect storms of the Great Lakes. From upper atmosphere ice forms and weather forecasting to small mammals in the snow. The initial interest in power generation continues as a more or less continuous thread of activity, shifting from the relatively tiny watersheds of New England to the huge Churchill Falls and Baie James projects of Newfoundland and Quebec. There has, in recent years, been increasing concern with water quality with pioneer papers on acid snow etc. By comparison the WSC is a relatively specialized organization, focussing strongly on multi-purpose water forecasting.

Concluding remarks

One of the great strengths of the ESC is the mix of people which it attracts. It acts as an interface between diverse groups and individuals in ice science and technology. Members include a very full spectrum of those interested in ice phenomena, interests which range from the most practical and applied to the most esoteric and theoretical. It is extremely important that successive Executives monitor activities to ensure that no single topic or regional or professional group dominates the organization for extended periods of time. We have tried, recently, for example, to identify 'themes' for meetings. Last year we had 'snow loading and buildings', this year 'snow and ice research in Quebec'. This is a useful idea as long as it does not preclude the acceptance of papers on any other suitable topic. The programme organizers must always make it clear that reports on equipment, techniques and current projects, which shed light on everyday problems of snow and ice work, are a welcome and valued part of meetings. The decline of private sector involvement in recent years is a real concern. We must try to rectify this in future. One way to do this would be to encourage private groups to host meetings as they did in the past.
As membership in the ESC is so diverse in terms of background and as the annual meetings move over quite a large area, it is inevitable that there will be a good deal of variation in the size and mix of clientele between meetings. Each Executive should however consciously address this matter, never deciding on a meeting site, a host, or a meeting theme casually.

The existence of the WSC should not be ignored. In the past it was customary for the President of the ESC and the WSC to attend each other's meetings. This has lapsed although, as indicated above, contact between the two organizations has not been lost. We would suggest that it would be worthwhile, from time to time, to print a complete index of the WSC Proceedings in our Proceedings. The WSC might be interested in printing our index in their Proceedings*.

The ESC Proceedings are now a valuable source of information for those in snow and ice work. Recent Executives and Editors have gone to some trouble to see that sets of Proceedings are available in key libraries in Canada, the U.S. and abroad. This effort must continue so that society gains full benefit from the Conference's efforts over the years. All members should be encouraged to solicit subscriptions to the Proceedings, which are not expensive, for their organizations' libraries. Full sets of Proceedings are now available at low cost.

Finally if we cannot persuade the ESC to return to a winter meeting date, can we give thought to the idea that plans begin to be made for an annual meeting to be held in the Arctic or Subarctic in the near future? After all, in terms of area, most of our 'territory' is in those regions.

We are most grateful to Dr. Don Dunlap for his comments on this paper.

References

* The 1984-85 and 1985-86 Executives initiated action on this (ed.)

Addendum, on the Central Snow Conference

Volume I of the Proceedings of the Central Snow Conference (CSC) was published by Michigan State College, East Lansing, Michigan in 1942. It is a 214 page report on the annual conference and activities of the CSC in 1941. The President was Melville W. Kyler, the Secretary-Treasurer, who signed the Proceedings, W.U. Garetka. A note (p. 213) records that the CSC came into being as a result of a meeting, in December 1940, called by Commander F.W. Reichelderfer, Chief, US Weather Bureau at Detroit, Michigan. At this meeting, some 40 persons founded the CSC which, at its 1941 meetings, attracted 275 delegates. The Proceedings include sections on Snow (in hydrological cycle, snowmelt, radiation and snow etc); Snow and Highway Transportation; Snow, Recreation and Wildlife; Snow, Forestry and Agriculture; "Cryologic Hydrology" and reports of various standing committees. Among these last was a recommendation that the CSC affiliate with the American Geophysical Union. Authors represented include: J.E. Church (the "father of snow surveying"); H. Landsberg (University of Chicago); Robert E. Horton and W.G. Hoyt (USAs). A number of Canadian authors were involved. A copy of this Volume, courtesy Dr. Don Dunlap, has been deposited in Trent University Library, Peterborough, Ontario K9J 7B8.
<table>
<thead>
<tr>
<th>Volume No.</th>
<th>Year</th>
<th>Proceeding No.</th>
<th>No. of Pages</th>
<th>No. of Papers</th>
<th>Location of Conference</th>
<th>Date of Conference</th>
<th>Notes</th>
</tr>
</thead>
</table>
2. Constitution & By-Laws state: a) Officers are elected annually
b) Meetings similar to those held by other Tech. Societies.
3. Gradually extended to include Canada and Northern Activities.
5. 70 persons in attendance of 1952.
6. No Publications Committee
2. "The Board Coverage and Diversified Interest possibly are the main reasons for the continuing success of the Organization".
3. An increase in Can. memberships
4. Publication of Proceedings - The Hydro Electric Power Commission of Ontario |
2. Report on Committee on Snow statistics
3. List of Papers not published in proceedings.
4. Interim Reports - pp. 5-8, 43
5. Publication of Proceedings - The Ontario Hydro Printing Dept. |
2. Publication - Niagara-Mohawk Power Corp. |
| Vol. 7 | 1961 | 18th | 188 | 8 | | Feb. 9 & 16 | 1. Does include $2.00 for Membership
3. Publications containing abstracts of Patterson Snow, pp. 186-188.
4. List of Papers not published in Proceedings
5. Publication - Rensselaer Polytechnical Institute.
(cont'd) |
<table>
<thead>
<tr>
<th>Volume No.</th>
<th>Year</th>
<th>Proceeding No.</th>
<th>No. of Pages</th>
<th>No. of Papers</th>
<th>Location of Conference</th>
<th>Date of Conference</th>
<th>Notes</th>
</tr>
</thead>
</table>

(cont'd)
<table>
<thead>
<tr>
<th>Volume No.</th>
<th>Year</th>
<th>Proceeding No.</th>
<th>No. of Pages</th>
<th>No. of Papers</th>
<th>Location of Conference</th>
<th>Date of Conference</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume No.</td>
<td>Year</td>
<td>Proceeding No.</td>
<td>No. of Pages</td>
<td>No. of Papers</td>
<td>Location of Conference</td>
<td>Date of Conference</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| Vol. 24 | 1979 | 36th | 149 | 11 | Alexandria Bay | June 7 & 8 | 1. Eastern Snow Conference Student Award for Snow Research 1979
2. E.S.C. Results of Snow Survey Schedule Committee Questionnaire
3. List of Attendees at E.S.C. 1979
4. Publication - Chas. T. Hain, Inc., Hydro Quebec, Ontario Hydro Water Resources Branch, New Brunswick Department of Fisheries & Mines, Anonymous E.S.C. Member |
2. Selected Bibliography 1980
3. List of Attendees at E.S.C. 1980
4. Publication - Chas. T. Hain, Inc., Hydro Quebec, Ontario Hydro Water Resources Branch, New Brunswick Department of Fisheries & Mines |
2. E.S.C. Results of Snow Survey Schedule Committee Questionnaire
3. List of Attendees at E.S.C. 1981
4. Publication - Chas. T. Hain, Inc., Hydro Quebec, Ontario Hydro Water Resources Branch, New Brunswick Department of Fisheries & Mines, Niagara Mohawk Power Corp. |
2. Snow Notes e.g. - Recollections of An Old Timer & Snow Notes
3. List of Attendees at E.S.C. 1982
4. Publication - (cont'd) |
| Volume No. | Year | Proceeding No. | No. of Pages | No. of Papers | Location of Conference | Date of Conference | Notes |
2. Report on the Snow Survey Committee
3. Exhibitors Section
4. List of Attendees at E.S.C. 1983
5. E.S.C. Student Award for Snow Research 1983
6. Publication - |
<table>
<thead>
<tr>
<th>Year</th>
<th>Educational Sector U.S.</th>
<th>Private Sector U.S.</th>
<th>Government Sector U.S.</th>
<th>Total Officers U.S.</th>
<th>President</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-52</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>E.F. Childs</td>
<td>Corp. of Engineers, U.S.</td>
</tr>
<tr>
<td>1952-53</td>
<td>1 1</td>
<td>4</td>
<td>5 1</td>
<td>L.H. Mann, Connecticut River Prince Co., U.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953-54</td>
<td>1 2 1</td>
<td>2</td>
<td>5 1</td>
<td>E.C. Johnson, U.S. Weather Bureau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955-56</td>
<td>1 2 1</td>
<td>2</td>
<td>5 1</td>
<td>C.E. Knox, U.S. G.S. (3 employed by Power Companies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956-57</td>
<td>1 1</td>
<td>3 1</td>
<td>5 1</td>
<td>L. Lansing, N.Y. Corporation Snow Survey, U.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957-58</td>
<td>1 2</td>
<td>2 1</td>
<td>5 1</td>
<td>A.T. Simmonds, New England Power Co., U.S. 3 employed by Power Companies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958-59</td>
<td>2 1 3</td>
<td></td>
<td>5 1</td>
<td>G.E. Townsend, U.S. Corp of Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959-60</td>
<td>1 1 4</td>
<td></td>
<td>5 1</td>
<td>R.A. Lane, Philadelphia Electric Co., U.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960-61</td>
<td>2 1 3</td>
<td></td>
<td>5 1</td>
<td>G.S. Hayes, U.S.G.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961-62</td>
<td>1 1 3</td>
<td></td>
<td>5 1</td>
<td>R. Kresge, U.S. Weather Bureau, standing Committees not included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962-63</td>
<td>1 1 2 1</td>
<td>4 2</td>
<td></td>
<td>L. Cartier, Cartier and LeClerc, Can.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963-64</td>
<td>1 1 2 2</td>
<td></td>
<td>4 2</td>
<td>E. Munger, Norwich University, Vermont</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964-65</td>
<td>1 2 1 1</td>
<td>4 2</td>
<td></td>
<td>O.Z. Bacon, Keenebee Power Co., Maine (3 employedit by power companies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966-67</td>
<td>1 1 3 2</td>
<td></td>
<td>4 3</td>
<td>J.A.S. Milne, Ontario Hydro, Can., More members at large</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967-68</td>
<td>2 2 3 4</td>
<td></td>
<td>4 3</td>
<td>N. Lally, U.S. Corp. of Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968-69</td>
<td>2 3 2 5</td>
<td></td>
<td>5 2</td>
<td>L.L. Cross, Chas. T. Main Inc., Mass.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970-71</td>
<td>1 3 2 5</td>
<td></td>
<td>5 2</td>
<td>G.P. Williams, N.R.C. Can. Canadian V.P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971-72</td>
<td>1 3 2 4</td>
<td></td>
<td>4 3</td>
<td>D.N. McMullen, Energy & Resources Management, Ont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972-73</td>
<td>1 4 1 5</td>
<td></td>
<td>5 2</td>
<td>R.E. Lautzenheiser, National Weather Service, U.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973-74</td>
<td>2 4 6 1</td>
<td></td>
<td>6 1</td>
<td>R.E. Falconer, SUNY, Albany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974-75</td>
<td>2 3 5 2</td>
<td></td>
<td>5 2</td>
<td>C.D. Hopkins, Jr., River Forest COTN, Conn.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975-76</td>
<td>1 3 1 4</td>
<td></td>
<td>4 3</td>
<td>R.B. Dickson, Univ. of N.B. Canada.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976-77</td>
<td>2 2 4 3</td>
<td></td>
<td>4 3</td>
<td>A.R. Eschler, SUNY, Syracuse, U.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977-78</td>
<td>2 2 4 3</td>
<td></td>
<td>4 3</td>
<td>J.E. Peters, Water Survey of CAJAPA, N.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978-79</td>
<td>1 3 2 4</td>
<td></td>
<td>4 3</td>
<td>D.V. Dunlap, Rutgers Univ., N.J.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 (cont'd)

<table>
<thead>
<tr>
<th>Year</th>
<th>Educational Sector</th>
<th>Private Sector</th>
<th>Government Sector</th>
<th>Total Officers</th>
<th>(President) Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979-80</td>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>S.S. Lazier, Queen's Univ., Ont.</td>
</tr>
<tr>
<td>1980-81</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>W. Tobiasson, USA-CRPEL</td>
</tr>
<tr>
<td>1981-82</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td>B.E. Goodison, AES, Can.</td>
</tr>
<tr>
<td>1982-83</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>P.L. Hansen, Ducks Unlimited Canada.</td>
</tr>
</tbody>
</table>

Table 3

NATIONALITY AND OCCUPATIONAL STATUS OF AUTHORS OF THE EASTERN SNOW CONFERENCE 1951-84

(This is a summary of information from Table 4)

<table>
<thead>
<tr>
<th>Volume No.</th>
<th>Year</th>
<th>Educational Sector</th>
<th>Private Sector</th>
<th>Government Sector</th>
<th>Total Authors</th>
<th>Total Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. 1</td>
<td>1952</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Vol. 2</td>
<td>1953-54</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Vol. 3</td>
<td>1955</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Vol. 4</td>
<td>1956</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Vol. 5</td>
<td>1957</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Vol. 6</td>
<td>1959b</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Vol. 6</td>
<td>1960</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Vol. 7</td>
<td>1961c</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Vol. 8</td>
<td>1962d</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Vol. 9</td>
<td>1963b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Vol. 10</td>
<td>1964</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Vol. 11</td>
<td>1965</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Vol. 12</td>
<td>1966</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Vol. 13</td>
<td>1967</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Vol. 13</td>
<td>1968</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

(cont'd)
<table>
<thead>
<tr>
<th>Volume No.</th>
<th>Year</th>
<th>Educational Sector</th>
<th>Private Sector</th>
<th>Government Sector</th>
<th>Total Authors</th>
<th>Total Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. 14</td>
<td>1969</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Vol. 15</td>
<td>1970</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Vol. 16</td>
<td>1971</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Vol. 17</td>
<td>1972</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Vol. 18</td>
<td>1973</td>
<td>6</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Vol. 19</td>
<td>1974</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Vol. 20</td>
<td>1975</td>
<td>3</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Vol. 21</td>
<td>1976</td>
<td>6</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Vol. 22</td>
<td>1977</td>
<td>6</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Vol. 23</td>
<td>1978</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Vol. 24</td>
<td>1979</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Vol. 25</td>
<td>1980</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Vol. 26</td>
<td>1981</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Vol. 27</td>
<td>1982</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>-</td>
<td>26</td>
</tr>
<tr>
<td>Vol. 28</td>
<td>1983</td>
<td>6</td>
<td>17</td>
<td>-</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

FOOTNOTES FOR TABLE

(a) Author or Paper only counted if occupational status or nationality known.
(b) Occupational status of four (4) unknown.
(c) Occupational and country status of one (1) unknown.
(d) One (1) author unknown.
(e) Occupational status of one (1) unknown, nationality of three (3) unknown.
(f) One (1) co-author, with Canad. paper, from Czech. Academy.
(g) Occupational status of two (2) U.S. authors unknown, one (1) author from Austria.
(h) Occupational status of one (1) U.S. author unknown.
(i) Occupational status of two (2) authors unknown.
TABLE 4: Selected authors and topics of the RSC

Without any reflection whatsoever on authors who are not included it is interesting to mention a few of those listed in Table 4 to give another perspective on the work and membership of the Eastern Snow Conference over the years. The number following the name is that assigned, in the following Index, to one of the author's papers.

N.W. Gendel (1), SIPRS on snow gauges and other topics
J.G. Potter (19), AES, on snowfall in Canada etc.
George Caradog (21), Shawinigan Power, on snowmelt in Ontario
R.A. Work (22), U.S. Department of Agriculture, Oregon, on water supply forecasting etc.
David Nutt (24), Dartmouth, on Labrador
Gunn & Douglas (29), Snowy Weather Group, McGill
Gold & Williams (30), NRCC, D.B.R., river ice and other topics
D.W. Boyd (56), AES, snowmelt and other topics
Vincent Schaefer, (Schenaers, atmosphere snow crystals
H.C. Millet (52), M.I.T., and Jerome Nemias, USNS, climatic change
Oscar Villeneuve (60), Quebec Weather Service, on that Service which he nurtured.
J.P. Bruce (73), AES, snowmelt and floods
Lincoln Wescott (1971), on permafrost and patterned ground
Hicks & Balsama (60), CRREL, on snow fence design
Benoit Michels (80), Laval, on river ice
T.L. Richards (84), AES, lake effect storms etc.
Bob Sykes (140), SUNY, Oswego, on the same topic
Merritt & Hays (101), U. of New Brunswick, snowmelt and runoff etc.
Eric Anderson (106), USGS, modelling snowmelt etc.
Mike Millman (118), CRREL, a variety of topics
Art Fischner (122), Syracuse, snow and trees
Marc Drouin (143), Laval, thermal ice above
R.J. Shaw (144), Guelph, simulated snowstorms
Ray Laczynski (157), SUNY, Albany, snow crystals etc.
Bob Dickinson (172), U. New Brunswick, forest and snowpock etc.
Gord Mackay (177), AES, mapping snow etc.
George Wattson (190), CRREL, river ice
P. Langham (196), Laval, modelling snowmelt etc.
Gene Limang (202), Cornell, snow and pollution
Barry Goodison (207), AES, snow samples and sampling etc.
Wayne Tobiason (220), CRREL, snow loading etc.
Sam Colbeck (221), CRREL, wet snow and other topics
Hok Moo (256), McMaster, high arctic snow and ice etc.
Andre Prechot (275), Quebec snow work etc.
Swanson & Golding (337), Northern Forest Research, Alberta and UBC, forestry and snow

It is possible to track some of these authors through various stages of their careers as titles, affiliations and fields of interest change.

While the RSC has attracted only a handful of authors from outside North America, they have been drawn from all over this continent, from south (e.g. Texas) to north (e.g. Alaska) and from west (e.g. California, Oregon, British Columbia) to east (Newfoundland). These authors have reported on work undertaken in the high polar regions, including Greenland and Antarctica, in the Himalayas and in Ecuador.
INDEX

1952

1954

12. Thompson, H. R. Glaciers and Land Forms In the Cumberland Peninsula of Saffin Island. pp. 29-34
13. Grobola, Kenneth J. Experimental Use of Air Bubbles for the Control of Sheet Ice at Safe Harbor. pp. 35-36

1955

15. Wilson, Walter T. Recent Trends In Improvement of Winter Precipitation Measurements. pp. 3-6
16. Stevens, Henry W. Date on Ice Thickness. pp. 7-19
18. Hopkins, Bryant, Chairman. Snow-Surveying Methods - Round Table Discussion. pp. 30-34

INDEX

TO

THE PROCEEDINGS

OF THE

EASTERN SNOW CONFERENCE

1952 through 1984

This index is an updated version of that produced by the Research Committee in the 1975 Proceedings to increase the availability and utility of the information in papers presented at the annual meetings. The subject classification is the same as that used in the previous version.

Peter Adams
President
1984-85

TABLE OF CONTENTS

(with this page as page 1)

<table>
<thead>
<tr>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>2</td>
</tr>
<tr>
<td>1954</td>
<td>2</td>
</tr>
<tr>
<td>1955</td>
<td>2</td>
</tr>
<tr>
<td>1956</td>
<td>3</td>
</tr>
<tr>
<td>1957</td>
<td>3</td>
</tr>
<tr>
<td>1958</td>
<td>4</td>
</tr>
<tr>
<td>1959-60</td>
<td>4</td>
</tr>
<tr>
<td>1961-62</td>
<td>5</td>
</tr>
<tr>
<td>1963</td>
<td>5</td>
</tr>
<tr>
<td>1964</td>
<td>6</td>
</tr>
<tr>
<td>1965</td>
<td>7</td>
</tr>
<tr>
<td>1966</td>
<td>7</td>
</tr>
<tr>
<td>1967</td>
<td>8</td>
</tr>
<tr>
<td>1968</td>
<td>8</td>
</tr>
<tr>
<td>1969</td>
<td>8</td>
</tr>
<tr>
<td>1970</td>
<td>9</td>
</tr>
<tr>
<td>1971</td>
<td>9</td>
</tr>
<tr>
<td>1972</td>
<td>10</td>
</tr>
<tr>
<td>1973</td>
<td>11</td>
</tr>
<tr>
<td>1974</td>
<td>11</td>
</tr>
<tr>
<td>1975</td>
<td>12</td>
</tr>
<tr>
<td>1976</td>
<td>12</td>
</tr>
<tr>
<td>1977</td>
<td>13</td>
</tr>
<tr>
<td>1978</td>
<td>13</td>
</tr>
<tr>
<td>1979</td>
<td>14</td>
</tr>
<tr>
<td>1980</td>
<td>15</td>
</tr>
<tr>
<td>1981</td>
<td>16</td>
</tr>
<tr>
<td>1982</td>
<td>16</td>
</tr>
<tr>
<td>1983</td>
<td>16</td>
</tr>
<tr>
<td>1984</td>
<td>19</td>
</tr>
</tbody>
</table>

Subject Index 21
1958

42. Warman, Henry J. Effect of Urbanization on Diurnal Temperatures. pp. 6-17

43. Williams, Gaynor P. Evaporation from Snow Covers in Eastern Canada. pp. 18-36

44. Gerdel, R. W. White-outs in Greenland. pp. 31-45

1959 - 60

47. Beaumont, R. T. and Robert Davis. Review of Techniques for Selection of Snow Courses in the Western States. pp. 5-16

52. Millet, Earl C. Climatic Trends of Temperature and Precipitation in the Continental United States. pp. 55-74

53. Pariseau, Ernest and Rene Haussner. Some Theoretical and Laboratory Researches on Ice Cover Problems. pp. 77-92

56. Ayer, Gordon R. Effect of Forest Cover on Snow Runoff. op. 119-127

57. Muller, Robert A. An Analysis of Factors Contributing to Cosus of Highway Snow Removal in Oswego Country, New York. pp. 129-139

58. Potter, J. G. Density of Freshly Fallen Snow. pp. 141-147

59. Pover, Bernard A. The Effect on Cloud Seeding Evaluation of Errors in Precipitation Measurements. pp. 149-158

60. Goddard, Maurice E. Relation Between Forestry and Snow Problems with Particular Reference to Northeastern United States. pp. 159-165

23. Wort, R. A. Western States Snow Surveys and Seasonal Water Supply Forecasts. pp. 93-97

1956

25. Pierce, R. S. The Effect of Land Use on the Depth and Duration of Soil Freezing in the North-East. pp. 11-16

27. Fitzgerald, J. J. Determination of Radioactive Fallout. pp. 75-33

32. Diamond, Marvin. Vehicular Trafficability of Snow. pp. 54-64

33. Schaefer, Vincent J. Methods for Preparing Replicas of Snow and Ice Crystals. pp. 69-71

1957

34. Wilmot, John C. Measurement of the Coefficient Of Linear Expansion Of Ice. pp. 76-83

35. Kapler, Chester W. Construction of Permafrost. pp. 84-95

39. Stockwell, Homer J. Use of Snow Surveys in the West. pp. 117-120

40. Sherrod, John Jr. The SNRE Bibliography. pp. 121-122

83. Williams, G. P. and L. W. Gold. The Use of Dust to Advance the Break-up of Ice on Lakes and Rivers. pp. 35-56
Discussion by C. E. Deslauriers. pp. 57-60

84. Richards, T. L. and V. S. Derco. The Role of "Lake Effect Storms" in the Distribution of Snowfall in Southern Ontario. pp. 61-77
Discussion by D. N. McMullen. pp. 78-80
Discussion by Livingston Lansing. pp. 81-83
Closure by Richards and Derco. pp. 84-86

Discussion by E. Pariset and R. Hauser. pp. 123-129

86. Michel, R. Theory of Formation and Deposit of Brazel Ice. pp. 130-142
Discussion by E. Pariset and R. Hauser. pp. 143-145
Discussion by J. E. Cousineau. p. 146
Closure by Dr. B. Michel. pp. 147-148

87. Johnson, Martin L. A Comparison of Snow Melt Hydrographs from the Agricultural Research Service Experimental Watershed, Danville, Vermont. pp. 149-167
Discussion by Arthur R. Eschner. pp. 168-170

89. Potter, Graham. Collection and Publication of Snow Cover Data by the Meteorological Service of Canada. pp. 180-184

91. Campbell, David R. The Use and Value of Snow Survey Data in the Operation of Hydroelectric Facilities. pp. 192-197

92. Lally, Nicholas. Snow-Survey Record - The Need for Long Term Records for Flood. pp. 198-209

Discussion by T. L. Richards. pp. 245-246

1961 - 62

64. Pierce, Louis D. An Analysis of Long Term Snow Cover Record as Related to Hydro Electric Operation. pp. 1-8

66. Boyd, D. U. Radiation Observations During the Snow Melt Period at Ottawa, Canada. pp. 25-34

68. Villeneuve, G. Oscar. Official Snow Bulletins of the Province of Quebec. pp. 45-51

70. Lord, Charles D. The Technical Aspects of the Ski Operation. pp. 67-70

71. Lull, Howard and Francis M. Rushmore. Influences of Forest cover on Snow and Frost in the Adirondacks. pp. 71-79

73. Bruce, James P. Snowmelt Contributions to Maximum Floods. pp. 85-104

76. McCall, J. E. Planning Stream-gaging Programs. pp. 133-141

77. Washburn, A. L. Instrumental Observations of Frost Creek and Solifluction in a Permafrost Environment. p. 142

79. Willmott, J. C. A Safe Ice Load Meter and a Motor-Driven Coring Tool for Estimating the Bearing Capacity of an Ice Sheet for Transportation Purposes. pp. 149-162

1963

Discussion by James Woodside. pp. 18-20

82. Blanchard, Byron and Sheldon Miller. Snow and Vermont's Highway System. pp. 21-24
Discussion by George E. Kirk, Jr. pp. 27-28

1967

118. Milelo, Michael A. and William H. Farrook. Some New or Experimental Equipment for Use on Snow and Ice. pp. 1-14

120. Foulsa, P. W. Niagara River Ice Control. pp. 35-45

121. Cross, Llewellyn L. Establishment of Precipitation Networks, West Pakistan and Ecuador. pp. 46-50

122. McMullen, D. N. Patterns of Spring Runoff - Thames River, Ontario. pp. 51-67

123. Schneider, William J. Snowfall, Accumulation, and Disposition as Related to the Northeast Drought. pp. 68-81

124. Williams, Gwynor F. Adhesion of Fragile Ice to Underwater Structures. pp. 82-91

1968

126. Brown, Dr. I. C. Report on Canadian Participation in the International Hydrological Decade. pp. 6-12

128. Ludlow, D. N. Early and Late Snow in New England as Evidence of Climate Change. pp. 24-28

130. Cowley, J. C. Ice Model Studies for the Northumberland Strait Crossing. pp. 43-69

133. Beament, Robert. The Present Status of Snow Forecasting. pp. 82-84

135. Pierce, C. H. A City Paralyzed by a Ski-Blizzard. pp. 95-103

1969

137. Classey, E. A. Suggested Methods for Hydrologic Instrumentation. pp. 4-16

1970

98. Power, Bernard A. Relationship Between Snowfall and Meteorological Conditions. pp. 39-44

100. Lansing, Livingston. Lake Effect Snow East and Southeast of Lake Ontario as Observed by Radar. pp. 65-77

1965

102. Freeman, T. G. Snow Survey Samplers and Their Accuracy. pp. 1-10

103. Hicks, J. R. Recent Advances in Weather Modification for Improvement of Airport Operations. pp. 11-24

106. Anderson, Eric A. Computer Model for Forecasting Runoff from Melting Snow. pp. 50-70

1966

110. Nelson, Norlan W. Water-Supply Forecasting as it Applies to Winter Snow Cover and Spring Runoff. pp. 18-25

112. Michel, R. and C. G. Triquet. Ice Cover Progression in the Chaudiere River. pp. 41-50

115. Lee, Philip E. Transportation versus Snow. pp. 80-88

180. Laurie, C. J. R. Ice Control Measures on the St. Lawrence River. pp. 123-146
1973

182. O'Byrne, Joseph M. and Donald Haynes. Use of a Snow Cam for Production of a Model Snow Material. pp. 15-19

185. Mathewson, Stanley A. Snow Distribution, Melt and Run-off Characteristics of an Inter-Jurald Swale. pp. 36-56

186. Davis, Robert T. Operational Snow Sensors. pp. 57-70

189. Fedder, C. Anthony, Robert S. Pierce and James W. Hasebeck. Snow Management Seems Unlikely in Northeastern Forests. pp. 102-113

193. Walsh, William A., Jr. and Nina C. Erickson. The History and Technology of Man-Made Snow. pp. 1-29

197. Hudson, Ronald V. Spring Flood Forecast Service in the Saint John River Basin. pp. 72-84

199. Ferguson, H. L. and E. B. Goodison. Snowpack Water Equivalent Maps and Snow Course Network Design Problems over Southern Ontario. pp. 91-111

289. Colbeck, S.C. A Simulation of the Enrichment of Atmospheric Pollutants in Snow Cover Runoff. pp. 1-10

294. Lyons, Wm. Berry, Paul A. Mayewski & Nasseruddin Ahmad. Acidity of Recent Himalayan Snow. pp. 49-58

295. Eaton, John S. The Chemistry of the Winter Snowpack and Its Relationship With the Acid Precipitation Problem (Abstract and References). p. 57

297. Hoo, Ming-Ko, Richard Heron, & Philip Marsh. Basal Ice Layers of Very Cold Arctic Snowpacks. pp. 67-75

298. Patch, Jeffrey D. Effects of Forest Cover on Snow Cover Distribution in the Nashwash Experimental Watershed Project. pp. 76-87

306. Manuel, P. An Investigation of the Importance of Snowcover to the Nutrient Regime of Eutrophic Soils in a Subarctic Drainage Basin (Abstract only). p. 117

1982

264. Woo, Ming-Ko. Breakup of Streams in the High Arctic. pp. 95-107

267. Leech, Margaret E. The Climatology of Freezing Rain in the Montreal Area. pp. 125-140

1980

268. Adams, W.P. Illustrations of Biological Roles of Winter Lake Cover. pp. 1-18

270. Chang, M & D.G. Boyer. Distributions of Extreme Snowfall in West Virginia. pp. 36-44

272. Harris, J.R. Snow Accumulation on and Around Solar Collectors. pp. 54-65

275. Frechet, A. Station Experimentale De Duchesnay: Rapport De Fonctionnement Pour L'Hiver. pp. 91-100

277. Tvereson, J.D. Wind Tunnel Modeling of Snow Fences and Natural Snow Fence Controls. pp. 127-143

278. Bates, R.E. Lake Champlain Ice Formation and Ice Free Dates and Predictions from Meteorological Indicators. pp. 144-145

279. Waterman, S.E. Modelling of Shortwave Radiation for Snow Covered Terrain. pp. 146-158

337. Swanson, Robert H. & Douglas L. Goding. Snowpack Management on Marmot Watershed to Increase Late Season Streamflow. pp. 215-218

338. Lang, W.A. Recollections of An Old Timer. pp. 219-222

339. Washichok, Jack N. Snow Notes. pp. 223-

1983

345. Munro, D.S. Interception of Wat Snow and Resultant Damage to White Pine. pp. 64-69

50. Aquiadd, Eduard. Snowpack Metamorphosis And Accelerated Melt Rains. pp. 106-117

51. Irwin, Peter A. & Colin J. Williams. Application of Snow-Simulation Model Tests to Planning and Design. pp. 118-130

311. Christiner, J. & K.D. Harris. Snow Streamflows From The Transient Snow Zone, Western Cascades, Oregon. pp. 27-30

313. Adams, W.P. Spatial Variability of Snow and Ice on Lakes and A Strategy For Measurement Based on Three Years' Data from Elizabeth Lake, Labrador. pp. 49-62

314. Wee, Ming-Ko. Snow Hydrology of The High Arctic. pp. 63-74

315. Trenholme, Charles A. The Effects of Smll Clear Cuts on Water Yield from The Dead Horse Watershed: Fraser, Colorado. pp. 75-83

316. Eshner, A.R. Eastern Snow Pack Conditions: Characteristics and Significance. pp. 84-91

319. Iversen, J.E. Development of Small-Scale Snowdrift Simulation. pp. 112-119

322. Tabler, Ronald D. Frequency Distribution of Annual Peak Water Equivalent on Wyoming Snow Courses. pp. 139-148

382. Beresford, D. The Effect of the Winter Ice Cover on Sphagnum Larvae in a Pond near Peterborough, Ontario. pp. 165-181

Snow-Foo Award. pp. 241-244

Exhibitors Section. pp. 245

395. Woo, Ming-Ka & MariAndree Dubrevil. Effects of an Arctic Settlement on the Snowpack. pp. 143-156

399. Subi, S.V. & G.M. Courtin. Anthropogenic Reduction In Forest Tree Canopy As A Critical Factor in Cryoedaphogenesis. pp. 177-179

403. Weinback, Robert S. Time Variability of Lake Ontario Winter Precipitation Patterns. pp. 195-197

407. Carr, D.A. Northern Ontario Precipitation Comparisons. pp. 207-211

1984

401. Theme Session on Remote Sensing of Snow & Ice. R.R. Wramen (Chairman). pp. 65-66

Subject Classification of Proceedings of the
Eastern Snow Conference

1952 - 1984

Ablation - 26,107,132,317
Aerial Observation - 94,117,145,215
Aerocals - 27,157
Airfields - 16,103
Air Temperature - 21,42,52,143,190
Albedo - 83,175,277,232
Altitude - 5
Atmospheric Pressure - 41,266
Bibliography - 40,266
Blizzards - 11,168,191,204
Blowing Snow - 44,93
Bubbling Systems - 13,14
Building - 35,144,366,367,368,369,
Cavitation - 5,17,19,24
Climate - 42,52,61,128,134,142,148,
217,219
Cloud Seeding - 38,44,46,59,103,149
Communications - 68
Data Processing - 67,106,271,287,
335,363
De-Icing - 4,7,13
Dynamics - 30,57,65,343
Education - 158,198
Energy Balance - 7,66,83
Evaporation - 7,26,43,66,152,153
Floods - 20,28,48,56,73,74,92,99,
122,180,189,197
Forecasting - 3,10,20,21,22,23,28
37,55,64,67,72,73,81,
88,91,99,101,106,110,
116,141,161,163,168,
194,197,205,222,243,
245,266,299,334
Forests - 25,26,28,30,36,56,60,71,
74,75,96,129,139,146,
155,167,178,189,195,236,
301,312,313,310,360,377,
Frazil Ice - 4,86,124
Frost Action - 77
Frost Depth - 202
Glaciers - 12,296
Glace - 65,151,165
Har - 38
Heat Transfer - 7,35,66,192,201,209,
Highways - 57,78,82,115,358
Hoard frost - 65
Hydrology - 54,76,87,126,137,148
181,185,189,194,197,
214,222,234
Ice - 31,65,104,118,124,151,152,
162,163,232,251,345
Ice Crystals - 150,157,165
Ice Jams - 51,108,112,180
Ice Properties - 31,34,49,53,85,
66,95,143
Ice Samplers - 6,16,180,288,305
Instruments - 1,2,8,9,15,69,79,
109,118,127,131,133,
137,156,167,255,394,
352,367,369,387,389
Lake Effect - 11,84,100,149,159,
168,168,179,217,241,
242,244,246,253,
359,366
Lake Ice - 4,16,34,83,120,260,271,
281,284,289,302,316,331,
346,365,369,378,379,382
Latitude - 5
Mapping - 145,177,199,203
Mathematic Analysis - 17,20,21
Mathematical Modeling - 173,194,196
201,223,260,
282,333,354,
355,357
Meteorology - 22,29,98,116
Periglacial Features - 12
Permafrost - 35,66,215

* Numbers refer to the above listing.