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Key takeaways

* China’s reported non-CO, GHG emissions of 2.0 Bt CO,e, (2012 or
16.8% of China’s total GHG emissions), ranks as the fifth largest
emitter globally, and will grow significantly by 2050

* Industrial processes and agriculture are the largest drivers of future
non-CO, GHGs growth

* Low cost mitigation potential is estimated to be about 40% by 2050

* By 2030, there are roughly 480 Mt CO,, mitigation potential, with
average cost of $S1/ton CO,,

* Largest non-CO, mitigation potential exists for methane for early
years, then replaced by HFC-125 reduction



Introduction

* China’s non-CO, greenhouse gas (GHGs) emissions are expected to
grow rapidly due to changes in urbanization, consumer preferences,
and behavior.

* China’s national GHG inventory for 2012 (released in Dec. 2016)
reported non-CO, GHG emissions of 2.0 billion metric tons (Bt) CO,e,
or 16.8% of China’s total GHG emissions

* What are mitigation potentials and their associated costs?



Modeling Study Overview

China 2050 DREAM has been under development for 10 years

Two major, full economy 2050 reports have been issued using the model:

= 2010-2011 study — one of earliest modeling studies to show a peak
and plateau in China’s energy and CO, emissions at that time

= Reinventing Fire: China — informed China’s 13" FYP, INDCs, US-
China negotiations running up to US-China Joint Announcement on
Climate Change and the Paris Agreement

China 2050 DREAM also used for more specific policy assessments,
including:

= Evaluation of sectoral policies in buildings, transport and power
sectors

= Evaluation of alternative energy sources, water-energy nexus

We added non-energy sector and non-CO, greenhouse gases (GHGSs) into
China 2050 DREAM for our analysis



Scenario Analysis

* Reference: business-as-usual energy and emissions pathway in
which only current policies continue to have impact and
autonomous technological improvement occurs

* CO, Mitigation: considers lowered energy demand and CO,
emissions due to full adoption of cost-effective efficiency and fuel
switching by 2050; updated from Reinventing Fire: China study

* CO, Plus Non-CO, Mitigation: considers adoption of additional cost-
effective and low-cost (below 20 $/tCO2¢) non-CO, mitigation
measures, with accelerated adoption after 2020



Non-energy sectors (industrial processes and agriculture) are the largest drivers of
future non-CO, GHGs
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Summary of Preliminary Mitigation Scenario

Based on literature and expert interviews, we quantified cost-effective and low cost
(below 20 S$/tCO2¢) non-CO, mitigation measures for:

 Methane (CH4):

* Energy-related: Coal Mining, Natural Gas Extraction and Transmission & Distribution

e Waste: Landfill Waste

e Agriculture: Rice Cultivation, Livestock Enteric Fermentation, Manure Management
Nitrous Oxide (N20):

* Agriculture: Crop Management/Fertilizer

HFCs: Mobile, Commercial, and Room ACs; Commercial and Industrial Refrigeration, HCFC-22
Production

PFCs: Aluminum Production
SF6: Power Generation



low cost mitigation potential of 40% reduction from in non-CO2 GHG emissions from 2015 by 2050
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By sector, industrial processes hold largest mitigation potential, followed
by agriculture and coal mining
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Largest non-CO, mitigation potential exists for methane for early years, then
replaced by HFC-125 reduction

Non-CO, Mitigation Measures by GHG
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Largest methane mitigation potential is in coal mining and agriculture
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Largest non-energy mitigation potential is in HFC-125 and HFC-32, and methane

Non-energy Mitigation Measures by GHG
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Largest non-energy non-CO, mitigation reduction potential is in Room ACs
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Cost Curve Development

* China cost curves for each sector were developed for 2020 and 2030,
from the EPA report

 Key costs of our modeled reduction potential in 2020/2030 based on
EPA mitigation cost estimates
 Calculate reduction rate in 2020/2030 using our model results

* Find the cost from EPA cost curve at the point where the same reduction rate
is reached in 2020/2030

* Find the cut-off cost
e Calculate average cost using EPA cost curve at and below this cut-off cost
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Cost curve by sector in 2020
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In 2020, all mitigation potential in
the sectors we considered in the
model can be achieved at costs of
below 20 S$/tCOz2e, except:

1)

2)

commercial ACs (8 MtCOze) and
industrial refrigeration (1
MtCOz2e) are not considered
because of lack of data;
manure management is not
considered (about 25 MtCO2e
reduction) because of lack of
data;
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Cost curve by sector in 2030, average cost

less than 1 S/tCO2e
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In 2030, all mitigation potential in
the sectors we considered in the
model can still be achieved at costs
below 20 S$/tCOz2e, except for
commercial ACs and manure
management because of lack of cost
data.

Total Cost 481 million S, 495 million
tCO2e



Conclusions and Policy Implications

* A 40% mitigation potential with costs below 20 $/tCO2e for non-CO,
GHGs by 2050.

* Largest potential: the industrial sector

* a well-established policy framework: Montreal Protocol and the Kigali
Amendment

* Co-control or complementary policies

 Methane in coal mining and waste sector

* Involves participation from diverse stakeholders and large numbers of
companies
* Policies evolve from voluntary practices to regulated standards

e China to develop pilots



Conclusions and Policy Implications

* Methane and N,O in the agricultural sector
* Highly decentralized

Require the participation of millions of farmers

Consider yields and material inputs.

Need robust institutional mechanisms to disseminate cost-effective mitigation
options while promoting behavioral changes to traditional farming practices.

Limited international experiences
* Need more research

* Significant uncertainties due to lack of local data.

* Consultation workshop planned for late summer/early fall to engage
industrial partners.
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Thank You!
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