LINES IN THE CARTESIAN PLANE
EQUATION OF A LINE

\[y = ax + b \]

- \(a = \text{slope} \) (rate of change)
- \(\frac{\text{rise}}{\text{run}} \)
- \(b = \text{y-intercept} \) (initial value)
GETTING AN EQUATION, GIVEN 2 POINTS

(1) WRITE OUT \(y = ax + b \)

(2) FIND SLOPE \[a = \frac{y_2 - y_1}{x_2 - x_1} \]

(3) INTO \(y = ax + b \), PLUG IN THE VALUE FOR “a” WITH ONE SET OF COORDINATES FOR \((x, y)\) AND SOLVE FOR “b”

(4) WRITE THE FINAL RULE IN "y = ax + b" FORM

NOTES/EXAMPLES/REMINDERS
GETTING AN EQUATION, GIVEN 2 POINTS...

\[a = \frac{y_2 - y_1}{x_2 - x_1} = \frac{16 - (-6.5)}{3 - (-2)} = \frac{22.5}{5} = 4.5 \]

\[y = ax + b \]

\[16 = 4.5(3) + b \]
\[16 = 13.5 + b \]
\[-13.5 = -13.5 \]
\[2.5 = b \]

\[y = 4.5x + 2.5 \]
X AND Y INTERCEPTS

- **y-intercept (initial value)**: the y-value when x = 0
- **x-intercept (zero)**: the x-value when y = 0

NOTES/EXAMPLES/REMINDERS
PARALLEL LINES

PARALLEL LINES
SAME SLOPE, DIFFERENT Y-INTERCEPT

Parallel lines that also have the same y-intercept are called coincident lines (drawn the same)

Parallel lines: no solution (they never cross)
Coincident lines: infinite solutions (they touch everywhere)

FOR BOTH LINES:
\[a = \frac{2}{3} \]

\[y = \frac{2}{3} x + 10 \]

\[y = \frac{2}{3} x + 5 \]

NOTES/EXAMPLES/REMINDERS
PERPENDICULAR LINES

PERPENDICULAR LINES

SLOPES ARE NEGATIVE RECIPROCALS

\[
\text{slope line 1} = -2, \quad \text{slope line 2} = \frac{1}{2}
\]

NOTES/EXAMPLES/REMINDERS
SOLVING SYSTEMS OF EQUATIONS

1. PUT BOTH EQUATIONS IN $y = ax + b$ FORM
2. MAKE EQUATIONS EQUAL EACH OTHER (no “y”s)
3. SOLVE FOR “x”
4. PLUG “x” INTO EITHER EQUATION AND SOLVE FOR “y”

Remember, the solution is the point where the two lines cross (x, y). In a word problem, there is an answer for “x” and “y”!

All systems of equations have one solution, except parallel lines (no solution) and coincident lines (infinite solutions)

NOTES/EXAMPLES/REMINDEERS