Perpendicular Lines (NRS)

1. What are the negative reciprocals of the numbers given below?

 a. $\frac{-2}{3}$
 Answer: __________

 b. 8
 Answer: __________

 c. $\frac{4}{5}$
 Answer: __________

 d. 0.5
 Answer: __________

 e. -1.25
 Answer: __________

 f. $0.3\bar{3}$
 Answer: __________

2. What is the slope of a line that is perpendicular to:

 $$2x - 3y - 81 = 0$$

Answer: __________________________
1. What are the negative reciprocals of the numbers given below?

a. \(\frac{-2}{3} = \frac{-2}{3} \rightarrow \frac{-3}{-2} = 1.5 \)
 Answer: \(1.5 \)

b. \(8 = \frac{8}{1} \rightarrow \frac{-1}{8} = -0.125 \)
 Answer: \(-0.125 \)

c. \(\frac{4}{5} = \frac{4}{5} \rightarrow \frac{-5}{4} = -1.25 \)
 Answer: \(-1.25 \)

d. \(0.5 = \frac{0.5}{1} \rightarrow \frac{-1}{0.5} = -2 \)
 Answer: \(-2 \)

e. \(-1.25 = \frac{-1.25}{1} \rightarrow \frac{-1}{-1.25} = 0.8 \)
 Answer: \(0.8 \)

f. \(0.\overline{3} = \frac{0.\overline{3}}{1} \rightarrow \frac{-1}{0.\overline{3}} = -3 \)
 Answer: \(-3 \)

2. What is the slope of a line that is perpendicular to:

\[2x - 3y - 81 = 0 \]

\[-2x + 81 \]

\[-3y = -2x + 81 \]

\[\frac{-3y}{-3} = \frac{-2x + 81}{-3} \]

\[y = \frac{0.6x - 27}{1} \]

Answer: \(a = -1.5 \)
3. What is the **equation** of a line *perpendicular* to \(y = -0.4 \, x + 3 \), passing through \((13, 25)\)?

Equation: __________________________

4. What is the equation of a line travelling *perpendicular* to one defined by the rule \(2y - 6x + 12 = 0 \), but passing through point \((-9, 8)\)?

Equation: __________________________
3. What is the equation of a line perpendicular to \(y = -0.4x + 3 \), passing through \((13, 25)\)?

Equation: \(y = 2.5x - 7.5 \)

4. What is the equation of a line travelling perpendicular to one defined by the rule \(2y - 6x + 12 = 0 \), but passing through point \((-9, 8)\)?

Equation: \(y = -0.3x + 5 \)
5. Line 1 and Line 2 are perpendicular. What is the equation of line 2?

(Drawing not to scale)

Answer: The equation of line 2 is \(y = \) _____________
5. Line 1 and Line 2 are perpendicular. What is the equation of line 2?

(Drawing not to scale)

STEP 1 Find slope of Line 1.

\[
\alpha = \frac{y_2 - y_1}{x_2 - x_1} = \frac{30 - (-14)}{5 - (-6)} = \frac{44}{11} = 4
\]

STEP 2 Line 2 is perpendicular to Line 1.

\[\frac{4}{1} \times \frac{-1}{4} = -0.25\]

Slope for Line 2 is: \(\alpha = -0.25\)

STEP 3 Plug-in point on Line 2 to find 'b'.

\[y = \alpha x + b\]
\[y = -0.25 x + b\]
\[12 = -0.25 (12) + b\]
\[12 = -3 + b\]
\[b = 15\]

Rule for Line 2 is:

\[y = -0.25 x + 15\]

Answer: The equation of line 2 is \(y = -0.25 x + 15\).
6. What are the coordinates of point D?

(Drawing not to scale)
6. What are the coordinates of point D?

Step 1: Add the \(\Delta \)s to the intercepts.

Step 2: Find the slope for line 1.

\[a = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - (-8)}{24 - 0} = \frac{8}{24} = \frac{1}{3} \]

Step 3: Line 1 is perpendicular to line 2... N.R.S.

\[\frac{h}{l} = \frac{0.3}{1} \Rightarrow \frac{-1}{0.3} = \frac{-3}{1} \]

Slope for line 2 is: \(a = -3 \)

Step 4: Finish building the rule by plugging in the point.

\[y = a \times x + b \]
\[y = -3 \times x + b \]
\[27 = -3 \times (0) + b \]
\[27 = b \]

Rule for line 2:

\[y = -3x + 27 \]

Step 5: Make \(y = 0 \) to find point D (which is on the x-axis).

\[y = -3x + 27 \]
\[0 = -3x + 27 \]
\[-27 = -3x \]
\[-27 \div -3 = -3 \times \]

\(x = 9 \)

\(D(9, 0) \)
7. Are the following equations parallel, perpendicular, or something else? Justify your answer.

Line 1: \(-4x + 2y + 16 = 0\)
Line 2: \(6y = -3x + 6\)

The two lines are
- [] Parallel
- [] Perpendicular
- [] Neither Parallel, nor Perpendicular

Justification:

7. Are the following equations parallel, perpendicular, or something else? Justify your answer.

Line 1: \(-4x + 2y + 16 = 0\)

Line 2: \(6y = -3x + 6\)

The two lines are

- [] Parallel
- [X] Perpendicular
- [] Neither Parallel, nor Perpendicular

Justification:

Not parallel ... the slopes are different.

PERPENDICULAR & the slopes are negative reciprocals.