Coker Gas Plant Design

Erik Magnuson¹*, Andrew Burns², Bruce Kirkpatrick², Galen Roda², Connor Miksch²
ExxonMobil Project Coordinator: Jay Westcott

Executive Summary
Coking facilities are refineries that upgrade residual oils from crude distillation to more valuable light hydrocarbons. These processes usually involve fractionation columns, which separate the coking products into fuel gas, liquified petroleum gas, naphtha, and heavier ends. Using Aspen Plus® and Aspen HYSYS®, we designed a coking gas plant to separate light gases, C₃s, C₄s, and heavy mixing components in a sour feed stream originating from the top of a coking process fractionator.

Our finalized design recovers nearly 100% of the fed refinery fuel gas, 92% propylene, 96% propane, 92% butylene, 74% butane, and 99% gasoline mixing component at full capacity. All product purities are above 90% with the exception of refinery fuel gas and butylene which have purities of 65% and 73% respectively. Product purity meets all prescribed specifications, including successful extraction of H₂S and CO₂ contaminants.

The sale of these products corresponds to an annual market value of $292.8M. With annual fixed costs of $49.3M and variable costs of $70.3M, our plant yields an investor rate of return of 23.6%, a 0.5% improvement on the alternative design. This is based on an estimated total permanent investment. The payback period is estimated at 4 years with an annual return on investment of 27.0%. The primary design also has the added benefit of improved product qualities and simplification of the sour gas sweetening system. Investment viability is most sensitive to product sales price and operating costs. The sensitivity of sales is of particular concern given the current economic landscape surrounding petroleum futures.

Sour gas and the amine treatment required for H₂S removal represent the primary safety concerns in the process, scoring 80/125 in a system FMEA analysis and achieving the maximum weighted environmental index factor using Biwer’s method when compared to other process components. These concerning elements were mitigated through process control implementation or on-site handling outside of the scope of this project.

Keywords
Coker gas — Separation process design — Chemical engineering

¹Department of Chemical Engineering, University of Colorado, Boulder, CO
²Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO
*Corresponding author: erik.magnuson@colorado.edu
Contents

1 Introduction 3
 1.1 Project Goal and Scope 3
 1.2 Specifications 3
 1.3 Assumptions 3
 1.4 Thermodynamics 3
2 Aspen Plus® and HYSYS® Modeling 4
 2.1 Pressurization Scheme 4
 2.2 Absorber and Stripping Column 5
 2.3 Debutanizer 5
 2.4 C3-C4 Separators 6
 2.5 Amine Sweetening System 6
 2.6 Enriching Column 7
 2.7 Miscellaneous Units 7
 2.8 Other Analyses 7
3 Alternative Model 8
 3.1 Design 8
 3.2 Product Recoveries 10
 3.3 Utilities Summary 11
 3.4 Economic Analysis 11
4 Finalized Model 11
 4.1 Design 11
 4.2 Product Recoveries 13
 4.3 Utilities Summary 13
 4.4 Economic Analysis 13
 4.5 Environmental and Safety Survey 14
 4.6 Social Impact Recommendation 15
5 Conclusions 15
 5.1 Cost-Benefit Analysis 15
 5.2 SWOT Analysis 15
Acknowledgments 16
References 16
Appendix A: Process Specifications 18
 Inlet Conditions 18
 Outlet Requirements 18
 Utility Parameters 18
Appendix B: Aspen Plus® Initial Model 19
Appendix C: Process Unit Sizing 20
 Decanter Sizing 20
Appendix D: Process Unit Costing 21
 Columns 21
 Decanters 21
 Compressors 21
 Pumps 21
 Heat Exchangers 21
 Itemized Total Cost 22
 Equipment Materials 22
Appendix E: Material Balances 23
 Pressurization Scheme 23
 Absorber-Stripper-Enriching Column System 23
 Debutanizer 23
 C3-C4 Separator Scheme 23
 Individual Absorber Material Balance 23
 Individual Stripping Column Material Balance 23
 Individual Enriching Column Material Balance 23
Appendix F: Energy Balances 25
Appendix G: Failure Mode Effects Analysis 26
Appendix H: Environmental Impact 27
Appendix I: Economic Sensitivity Plots 28