Ultrasound of the Rotator Cuff: Technique, Pathology, and Pitfalls

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Disclosures:
- Consultant: Bioclinica
- Advisory Board: GE, Philips
- Book Royalties: Elsevier

Note: all images from the textbook Fundamentals of Musculoskeletal Ultrasound are copyrighted by Elsevier Inc.

Rotator Cuff

Ultrasound Appearance:
- Tendon: hyperechoic, fibrillar
- Muscle: relatively hypoechoic
- Bone cortex: hyperechoic, shadowing

Technique: position #1
- Neutral, supination
 - Hand on lap, palm up
 - Anterior (10-17 MHz)
 - Biceps tendon:
 • Transverse, longitudinal

Long Head of Biceps Brachii Tendon

Note: Subacromial-subdeltoid Bursa (light blue)
Technique: position #2

- External Rotation
 - Anterior
 - 10-17 MHz linear
- Subscapularis tendon
 - Longitudinal, transverse
- Biceps dislocation

External Shoulder Rotation

Subscapularis

Technique: position #3

- Internal rotation, extension
 - Back of hand at other back pocket
 - Anterior (7-13 MHz linear)
- Supraspinatus
 - Start longitudinal
 - Infraspinatus

Neutral Position

Internal Rotation
Supraspinatus Tendon: normal
- Hyperechoic and fibrillar echotexture
- Convex superior surface
- Uniform thickness: transverse

Technical Considerations
- > 10 Mhz (prefer at least 12 Mhz)
- Supraspinatus: long axis most important plane
 - Less pitfalls, easy recognition of anatomy
 - >90% accuracy long axis alone
- Biceps tendon (intra-articular)
 - Important landmark: complete evaluation

1Arend CF et al. J Ultrasound Med 2010; 29:1725
Supraspinatus Tendon: distal

Long Axis

Short Axis (Greater Tuberosity)

Supraspinatus and Infraspinatus Tendons

Short Axis (Greater Tuberosity)

Supraspinatus and Infraspinatus Tendons

Short Axis

Supraspinatus – Infraspinatus Junction

Middle Facet: Infraspinatus overlaps supraspinatus

From: Chang EY et al. AJR 2014; 202:w376

Technique: position #4

- Neutral position
 - 10-17 MHz linear
 - Acromioclavicular joint
 - Subacromial-subdeltoid bursa
 - Dynamic: impingement

Subacromial-subdeltoid Bursa

Coronal

Acromion

Clavicle

AC Joint

Greater Tuberosity

Suprasp
Impingement Test

Technique: position #5
- Neutral position: posterior (5 – 12 MHz)
 - A. Posterior glenohumeral joint
 - Joint recess, infraspinatus
 - Labrum, spinoglenoid notch
 - B. Muscle atrophy
 - C. Suprascapular notch
 - Superior labrum

Infraspinatus Tendon & Posterior Labrum
- Infraspinatus: Long Axis
- No Atrophy (Short Axis, extended field-of-view)

Suprascapular Notch and Superior Labrum
- Coronal Plane

Rotator Cuff Tears:
- General comments
- Secondary signs of rotator cuff tear
- Pitfalls in rotator cuff sonography
Rotator Cuff Tear:

- Meta-analysis: 65 articles
- Full-thickness tears:
 - MRA, MRI, US = in sensitivity (92 – 95%)
 - MRA more specific
- Partial-thickness tears:
 - MRA most sensitive (86%) and specific
 - MRI (64%), US (67%)

Rotator Cuff Tears:

- Tears are hypoechoic / anechoic
- Indirect signs at ultrasound:
 - Cortical irregularity: supraspinatus footprint
 - If present on radiographs, 75% have tear
 - Volume loss
 - Massive tear: non-visualization

Rotator Cuff Abnormalities:

Categories:

- Partial-thickness tear
 - Articular-sided
 - Bursal-sided
 - Intrasubstance (or interstitial)
- Full-thickness tear
- Tendinosis

Supraspinatus: normal

Long Axis

Supraspinatus Insertion

From: Siebold et al.
RadioGraphics
1999; 19:685
Supraspinatus Tears: extent

- Rim-rent Tear
- Partial Articular
- Partial Bursal

From: Fundamentals of Musculoskeletal Ultrasound

Rotator Cuff Tear: Extent

- Partial-thickness:
 - Intersitial
 - Articular
 - Bursal

- Full-thickness, incomplete:
 - Extends to two surfaces

- Full-thickness, complete:
 - Entire tendon discontinuous
 - Full width

Articular Partial-thickness Tear: supraspinatus

- Long Axis
- Short Axis

Articular Partial-thickness Tear: supraspinatus

Long Axis
Coronal T2w

Pitfall Alert!
Anisotropy

- Sound beam oblique to tendon fibers
- Artifactually hypoechoic
- Most common location for this error: rim rent area

Supraspinatus: long axis
Bursal Partial-thickness Tear: supraspinatus

Full-thickness Tear: supraspinatus

Note: Cartilage Interface Sign (open arrow)

Full-thickness Tear: supraspinatus

T2w Coronal-oblique

T2w Sagittal-oblique
Large Full-thickness Tear: supraspinatus

Long Axis Short Axis

Chronic Full-thickness Tear: supraspinatus

1 year earlier

Intrasubstance Tear: supraspinatus

Long Axis

*Note: lack of cartilage interface sign

Tendinosis

- No inflammatory cells
 - Mucoid degeneration, chondroid metaplasia
- Hypoechoic, ill-defined
- Possible increased thickness
- No cortical irregularity*

*Radiology 2004; 233:234

Tendon Tear versus Tendinosis

*both may appear hypoechoic

Tear
- Anechoic
- Well-defined
- Homogeneous
- Thinned
- Bone irregularity*

Tendinosis
- Hypoechoic
- Ill-defined
- Heterogeneous
- Swollen
- Smooth cortex

*At supraspinatus tendon footprint in patients over 40 years old
Fatty Infiltration and Muscle Atrophy

• Supraspinatus and infraspinatus
 – Infraspinatus: only variable to predict cuff healing

• Associations:
 – Chronic, large, anterior supraspinatus tears

• Ultrasound:
 – Comparable to MRI
 – Improved reliability with extended field-of-view

2Hodler et al. Radiology 2005; 237:58
3Wall LB et al. JBJS 2012; 94:e83.
4Nazarian et al. 2008; 190.27.

Fatty Infiltration and Muscle Atrophy

• Indistinct tendon-muscle border
• Increased muscle echogenicity
 – Compared to teres minor
• Decreased muscle bulk
 – Compared to teres minor
 – Bone landmark: ridge in scapula
 – Short axis: infraspinatus 2x size

Infraspinatus Atrophy

Short Axis | Long Axis

Atrophy: supraspinatus and infraspinatus

Supraspinatus | Infraspinatus

Teres Minor

Short Axis (extended field-of-view)

No Atrophy

Teres Minor

Supraspinatus | Infraspinatus

Short Axis (extended field-of-view)

Rotator Cuff Tears:

• General comments
• Secondary signs of rotator cuff tear
• Pitfalls in rotator cuff sonography
Secondary Findings of Rotator Cuff Tears:

- Volume loss of tendon substance
- Cortical irregularity
- Effusion (articular & bursal)
- Cartilage interface sign

Tendon Volume Loss

Full-thickness Tear: supraspinatus

Cortical Irregularity:

- Greater tuberosity: at supraspinatus insertion
- When present: 75% have rotator cuff tears
 - Patient over 40 years old
- When absent: 96% normal cuffs by sonography

AJR 1998; 171:229
Radiology 2004; 230:234

Cortical Irregularity: no significance

Joint Effusion and Bursal Fluid

Subscapularis Tendon

Humerus

Deltoid
Small Full-thickness Tear: supraspinatus

Rotator Cuff Tears:
- General comments
- Secondary signs of rotator cuff tear
- Pitfalls in rotator cuff sonography

Anisotropy: supraspinatus

Improper Positioning: supraspinatus

Incomplete Evaluation of Supraspinatus
Musculotendinous Junction: supraspinatus

Bursal Thickening Simulating Intact Cuff

Pseudofibers with Full-thickness Tear

Miscellaneous Cuff Pathology:
- Infraspinatus tendon
- Subscapularis tendon
- Post-operative cuff

Infraspinatus Tear: full-thickness

Miscellaneous Cuff Pathology:
- Infraspinatus tendon
- Subscapularis tendon
- Post-operative cuff
Focal Full-thickness Tear: subscapularis

Subscapularis Tear: full-thickness

Miscellaneous Cuff Pathology:
- Infraspinatus tendon
- Subscapularis tendon
- Post-operative cuff

Post-operative Rotator Cuff:
- Post-op tendon: echogenic & thin*
- Reimplantation trough
- Echogenic sutures & anchors

Post-operative Rotator Cuff:
- Recurrent tear: usually large with nonvisualization
- Focal hypoechoogenicity: equivocal

*Mack et al. AJR 1988; 150:1089
Take-home Points

- Must follow a protocol
- Bone landmarks: greater tuberosity facets
 - Supraspinatus versus infraspinatus
- Cortical irregularity: important indirect sign
 - Supraspinatus tears
- Pitfalls:
 - Focal anisotropy simulating articular partial tear
 - Bursal partial tear: volume loss

Syllabus on line and other educational material:
www.jacobsonmuskus.com
Twitter handle: @jjacobsn