“MRI of the Hip”
Wednesday, May 2nd, 2018 - 12 noon

REGISTER YOUR ATTENDANCE ON ETA

Email: fhseta@mcmaster.ca
Subject Line: ETACG8B

An unrestricted educational grant has been provided by:
Toshiba Canada Medical Systems Limited
GE Healthcare

MRI of the Hip

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Disclosures:
• Consultant: BioClinica
• Advisory Board: GE, Philips
• Book Royalties: Elsevier
• Not relevant to this talk

Note: all ultrasound images from the textbook Fundamentals of Musculoskeletal Ultrasound are copyrighted by Elsevier Inc.

Take Home Points
• Joint effusion: does not collect dependently
• Imaging for FAI is unreliable
• Bone marrow edema:
 – Is not early osteonecrosis
 – Is likely from insufficiency fracture
• Insufficiency fracture: MRI is best
• Trochanteric bursitis is uncommon

Outline:
• Hip joint
• Labrum and FAI
• Osteonecrosis
• Fractures
• Trochanteric pain syndrome

Joint Pathology
• Effusion:
 – Reactive, inflammation, hemorrhosis
• Synovial hypertrophy:
 – Inflammatory: rheumatoid, atypical infection
 – Proliferative: PVNS, synovial chondromatosis
 – Characterized: enhancement
Hip Joint: anatomy

- Distal extent: to intertrochanteric line
- Recess: between labrum and capsule
- Does not collect dependently
 - Surrounds femoral neck
- Iliopsoas bursa:
 - Normal joint communication in 15 - 20%
- Obturator externus bursa: <10%

1 Moss et al. Radiology 1998; 208:43
2 Robinson P et al. Radiology 2003; 210:499

Injection / Aspiration: fluoroscopy

- 75% direct anterior
- 24% oblique anterior
- 1% direct lateral

Shortt. Skeletal Radiol 2009; 38:377

Iliopsoas Bursa

Arthrogram

Iliopsoas Bursa: distention

- Anterior and posterior layers
 - Fibrous tissue + minute layer of synovium
 - Hyperechoic
 - Each 2 - 4 mm thick

Radiology 1999; 210:499

Hip: anterior recess
Pigmented Villonodular Synovitis

- Benign synovial proliferation
- Synovial hyperplasia
 - Multinucleated giant cells
 - Lipid-laden macrophages
 - Hemosiderin deposition
- Monoarticular: localized or diffuse

Lin et al. AJR 1999; 172:191

Synovial Chondromatosis

- Benign cartilaginous metaplasia
- Large joints: knee and hip
- May or may not ossify
- May detach: intra-articular bodies
Total Hip Arthroplasty

- Metal-on-metal articulation
- Wear debris, hypersensitivity
 - Joint effusion synovitis
 - Bursa distention
- Pseudo-tumor:
 - Soft tissue: necrosis, inflammation
 - Ultrasound: 99% sensitive\(^1\)
 - MRI: effective\(^2\)

\(^2\)Garbuz DS Clin Orthop Relat Res 2014; 472:417

Take Home Points

- Joint effusion: does not collect dependently

Labral Tear: MR arthrography

- Abnormal contrast extension into labrum
- Improved sensitivity: 50% (MRI) to 81%\(^1\)
- Anterior: most common
- Classify:
 - Degeneration: gray signal
 - Partial tear, full-thickness tear
 - Detachment

\(^1\)Sutter R et al. AJR 2014; 202:160

Outline:

- Hip joint
- Labrum and FAI
- Osteonecrosis
- Fractures
- Trochanteric pain syndrome

Labrum: degeneration

Note hip osteophytes (white arrows)
Anterior Labrum: sagittal T1-w fat sat

Tear
Normal

Anterior Labrum: axial T1-w fat sat

Tear
Normal

Labrum Tear: full-thickness

Labral Detachment

Hip Labrum: normal variants
- Sublabral sulcus
- Posteroinferior groove
- Pectinofoveal fold
- Supra-acetabular fossa

Hip Joint: sublabral sulcus
- Smooth contrast-filled cleft: <50%
- Junction of labrum and hyaline cartilage
- No labral detachment
- No labral abnormality

Saddik. AJR 2006; 187:W507
Sublabral Sulcus

Hip Joint: posteroinferior groove
- Normal variant: 22.4%
- Posteroinferior quadrant
- Near transverse ligament: inferior

Dinauer PA et al. AJR 2004; 183:1745

Posteroinferior Groove

Hip Joint: pectinofoveal fold
- Seen at MR arthrography: 95%
- Variable appearances
- Variable attachments
 - Usually inserts onto capsule
 - May insert onto femur

Blankenbaker D et al. AJR 2009; 192:93

Hip Joint: supra-acetabular fossa
- Pseudodefect of acetabular cartilage
 - Type 1: 1.6%
 - Bony fossa filled with contrast
 - Type 2: 8.9%
 - Bony fossa filled with cartilage

Dietrich TJ et al. Radiology 2012; 263:484

Supra-acetabular Fossa: Type 1

From Dietrich TJ et al. Radiology 2012; 263:484
Supra-acetabular Fossa: Type 2 (white arrow)

Note (black arrow): supra-acetabular roof notch (another normal variant)

From Dietrich TJ et al. Radiology 2012; 263:484

Labral Tear + Paralabral Cyst

Coronal T1w

Paralabral Cyst

- Multilocular, fluid signal
- Associated with labral tear: detachment
- Fill with intra-articular contrast: 94%
- Extend extra-articular: 72%
- Remodel adjacent ilium: 50%

Magerkurth O et al. Skeletal Radiol 2012; 41:1279

Labrum Tear + Paralabral Cyst

Labral Tear: location

- Anterior: iliopsoas tendon impingement
- Anterior or anterosuperior:
 - Associated with CAM-type femoroacetabular impingement
- Posterolateral tear:
 - Pincer-type femoroacetabular impingement
 - Leveraging effect

Aly AR et al. Skeletal Radiol 2013; 42:1245

Femoroacetabular Impingement

- CAM-type
- Pincer type
- Combination of both: most common

Brian P et al. Semin Roentgenol 2010; :230
CAM-type FAI:
- Extra bone:
 - Femoral head-neck junction
- Hip flexion / internal rotation:
 - Contact between extra bone and anterior labrum
- Labral tear, cartilage injury

CAM = a mechanical linkage that translates motion

FAI: pathology
- Radiograph: femur
 - Pistol-grip deformity
 - Fibrocystic change
- MRI: alpha angle >50 degrees
- MR arthrography:
 - Improved sensitivity acetabular cartilage: 83% (MRI) to 92%¹
 - No advantage: femoral cartilage defects

¹Sutter R et al. AJR 2014; 202:160

CAM-type FAI: Pistol-grip deformity

Pitfalls
- Pseudo-bump
 - Capsular reflection
 - Low signal
- Pseudo-labral tear
 - Adjacent iliopsoas tendon
 - Low signal
 - Simulates displaced labral tissue

Alpha Angle
Abnormal: >50 degrees

Iliopsoas
Capsule
Oblique
Pincer-type FAI:
• Deep hip socket or retroverted acetabulum
• Abnormal contact between acetabular rim and labrum
• Radiograph: cross-over sign
• MRI: acetabular retroversion

Pincer-type FAI: Cross-over sign

Note: distance between sacrococcygeal junction and pubis should be between 3 and 4 cm

Pincer-type FAI: Otto Pelvis (idiopathic acetabular protrusio)

FAI: imaging findings
• Radiography: inaccurate
 – Pistol-grip and fibrocystic change
 – Cross-over sign
• Alpha angle measurements:
 – Unacceptable intra- and inter-observer variability
 – Does not correlate with physical exam findings
 – Osseous bump: not always anterior

Femoral head and acetabulum: medial to ilioischial line
Take Home Points

• Joint effusion: does not collect dependently
• Imaging for FAI is unreliable

Outline:

• Hip joint
• Labrum and FAI
• Osteonecrosis
• Fractures
• Trochanteric pain syndrome

Osteonecrosis: terminology

• Involving end of a bone:
 – Avascular necrosis
 – Aseptic necrosis
• Diaphysis or metaphysis:
 – Bone infarct

Osteonecrosis: etiology

• Anemia (sickle cell)
• Steroids
• Etoh
• Pancreatitis
• Trauma
• Idiopathic
• Caisson disease or Chronic renal failure (children)

Osteonecrosis: classification

• Modified Ficat
• 1: symptoms but normal radiographs
 – 1A: abnormal MRI; 1B: abnormal bone scan
• 2: radiograph positive- mixed lucent sclerotic
• 3: subchondral lucency (crescent sign)
 – 3A: without collapse; 3B: with collapse
• 4: osteoarthrosis

Osteonecrosis

Note early flattening or collapse
Osteonecrosis: MRI findings

- Serpiginous, geographic low signal
 - Represents interface, not necessarily calcified
 - Bone marrow edema NOT early osteonecrosis
 - Weight-bearing aspect of femoral head
- Internal signal: variable
- Double line sign: pathognomonic
 - High signal (T2w) inside low signal line

1. Kim YM et al. JBJS 2010; 82B:837

Isolated Bone Marrow Edema

- In the past, was called:
 - Transient osteoporosis of the hip
 - Transient bone marrow edema syndrome
- Now: due to insufficiency fracture
 - Look for discontinuous linear low signal
 - Subcortical, parallel to cortex
 - Subtle collapse, little femoral head abnormality
- Is NOT a early finding of osteonecrosis

Insufficiency Fracture

Take Home Points

- Joint effusion: does not collect dependently
- Imaging for FAI is unreliable
- Bone marrow edema:
 - Is not early osteonecrosis
 - Is likely from insufficiency fracture

Outline:

- Hip joint
- Labrum and FAI
- Osteonecrosis
- Fractures
- Trochanteric pain syndrome

Femur Fractures: etiology

- Traumatic
- Stress
 - Insufficiency-type:
 - Normal stress on abnormal bone
 - Osteopenia, bisphosphonate-related
 - Fatigue-type:
 - Abnormal stress on normal bone
- Pathologic

Fractures: femur

- Intra-capsular
 - Subcapital
 - Transcervical
 - Basicervical
- Extra-capsular
 - Inter-trochanteric
 - Sub-trochanteric
 - Peri-trochanteric
 - Trochanteric

Fractures: femur

- MRI findings:
 - Bone marrow edema
 - T1w and PDw: linear low signal fracture line
 - T2w: low or high signal fracture line
- MRI is much better than CT
 - Sensitivity (insufficiency): MRI 99%, CT 69%
- MRI most accurately shows extent of fracture

\(^1\)Cabarrus MC et al. AJR 2008; 191:995
Proximal Femur Fracture: MRI

Garden Classification
1. Incomplete, valgus impacted
2. Complete, non-displaced
3. Displaced, angulated
4. Displaced

Garden 3 or 4 = hip replacement because of osteonecrosis risk

Femoral Neck Fracture: now displaced

Intertrochanteric Fracture

Subtrochanteric Fracture
Fracture: bisphosphonate

- To treat osteoporosis: *i.e.* Fosamax
 - Inhibits osteoclasts, may slow bone turnover
- Increased risk of fracture:
 - Average treatment at fracture: 6 years
 - Femur: subtrochanteric, diaphyseal, lateral cortex
- Early sign: periosteal reaction
 - 2% are asymptomatic at early stage
 - Black line: fracture likely progresses

Chen SS et al. AJR 2010; 194:1581

Take Home Points

- Joint effusion: does not collect dependently
- Imaging for FAI is unreliable
- Bone marrow edema:
 - Is not early osteonecrosis
 - Is likely from insufficiency fracture
- Insufficiency fracture: MRI is best
Outline:

• Hip joint
• Labrum and FAI
• Osteonecrosis
• Fractures
• Trochanteric pain syndrome

Trochanteric Pain Syndrome:

• Trochanteric bursitis: uncommon\(^1\)
 – Up to 20% of subjects\(^2\)
 – Not actually inflamed\(^3\)
 – Not associated with pain\(^4\)
• Gluteus tendinosis: 50%\(^1\)

2Long SS et al. AJR 2013; 201:1083
3Silva F et al. Clin Rheumatol 2008; 14:52
4Blankenbaker et al. Skeletal Radiol 2008; 37:903

Greater Trochanter: gluteal tendons

Greater Trochanter

Pfirrmann et al. Radiology 2001; 221:469

Trochanteric Bursa Distention

Peritrochanteric Fluid Signal

• Tendon:
 – Gray: tendinosis; Fluid signal: tear
 – Calcific tendinosis
• Bursa
• Diffuse soft tissue: common finding
 – Doesn’t correlate with present\(^5\)
 – Likely irrelevant if symmetric

\(^5\)Blankenbaker DG et al. Skeletal Radiol 2008; 37:903
Take Home Points

- Joint effusion: does not collect dependently
- Imaging for FAI is unreliable
- Bone marrow edema:
 - Is not early osteonecrosis
 - Is likely from insufficiency fracture
- Insufficiency fracture: MRI is best
- Trochanteric bursitis is uncommon

Syllabus on line and other educational material:
www.jacobsonmuskus.com
Twitter handle: @jjacobson