Ultrasonography: Sports Injuries

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Disclosures:
• Consultant: Bioclinica
• Book Royalties: Elsevier
• Advisory Board: Philips, GE

Note: all images from the textbook Fundamentals of Musculoskeletal Ultrasound are copyrighted by Elsevier Inc.

Case #1: Supraspinatus Tendon

Case #1:
- **Findings:**
 - Well-defined hypoechoic defect
 - Cortical irregularity: greater tuberosity
 - Cartilage interface sign
- **Diagnosis:**
 - Articular-sided partial-thickness supraspinatus tear

Rotator Cuff Tears:
- Most tears are hypoechoic / anechoic
- Larger tears: deltoid dips into tendon gap
- Massive tear: non-visualization
- Adjacent cortical irregularity: important indirect sign of supraspinatus tear

Supraspinatus Insertion

Supraspinatus Tears: extent

- **Rim-rent Tear** or PASTA lesion
- **Partial Articular**
- **Partial Bursal**

From: Fundamentals of Musculoskeletal Ultrasound

Supraspinatus Tears: extent

- **Intrasubstance**
- **Full thickness**

From: Fundamentals of Musculoskeletal Ultrasound

Cortical Irregularity:

- Greater tuberosity: at supraspinatus insertion
- When present: 75% have rotator cuff tears
 - Patient over 40 years old
- When absent: 96% normal cuffs by sonography

AJR 1998; 171:229
Radiology 2004; 230:234

Articular Partial-thickness Tear: supraspinatus

Long Axis
Coronal T2w

Pitfall Alert!

Anisotropy

- Sound beam oblique to tendon fibers
- Artfactually hypoechoic
- Most common location for this error: rim rent area

Supraspinatus: long axis

Bursal Partial-thickness Tear: supraspinatus

Long Axis
Coronal T2w
Full-thickness Tear: supraspinatus

Note: Cartilage Interface Sign (open arrow)

Tendon Tear versus Tendinosis

both may appear hypoechoic

Tear
- Anechoic
- Well-defined
- Homogeneous
- Thinned
- Bone irregularity

Tendinosis
- Hypoechoic
- Ill-defined
- Heterogeneous
- Swollen
- Smooth cortex

Case #1: Take Home Points

- Tear: well-defined hypoechoic defect
- Cortical irregularity: supraspinatus footprint
- Cartilage interface: articular extension
- Pitfall: focal anisotropy
- Tuberosity anatomy

Supraspinatus – Infraspinatus Junction

Middle Facet: Infraspinatus overlaps supraspinatus

From: Chang EY et al. AJR 2014; 202:w376

Case #2: Distal Biceps Brachii

Long Axis: proximal

Radius

Long Axis: distal
Case #2:

• Findings:
 – Biceps brachii tendon defect
 – Tendon retraction
 – Posterior acoustic shadowing

• Diagnosis:
 – Biceps brachii tendon tear: retracted, full-thickness

Biceps Brachii:

• Insertion: radial tuberosity
 – Short head: superficial, distal
 – Long head: deep, proximal

• No synovial sheath
• Bicipitoradial bursa

Biceps Brachii Tendon: distal

1 = long head
2 = short head

Long Axis

Biceps Brachii: terminal bifurcation

Note: toggling the transducer, which creates anisotropy allows visualization of two tendon heads

Courtesy of M. Chiavaras, Hamilton, Ontario

Biceps Brachii Tendon: complete tear

Long Axis
Short Axis

Kalume Brigido M. Eur Radiol 2009; 19:1817

Biceps Brachii Tendon: complete tear non-retracted

Longitudinal: dynamic imaging

Kalume Brigido M. Eur Radiol 2009; 19:1817
Biceps Brachii Tendon: partial tear (short head)

Retracted superficial short head (yellow arrows)
Hypoechoic but intact deep long head (white arrows)

Biceps Tendon Tears: dynamic imaging

Case #2: Take Home Points

- Biceps brachii: terminal bifurcation
- Dynamic imaging:
 - Supination and pronation
 - Non-retracted full-thickness from partial-thickness tendon tear

Case #3: Distal Triceps Brachii

- Findings:
 - Triceps brachii tendon defect
 - Tendon retraction
 - Avulsion fracture fragment
- Diagnosis:
 - Triceps brachii tendon tear: retracted, partial-thickness

Anatomy of the Distal Triceps Brachii

- Superficial (blue arrow): long + lateral heads
- Deep (black arrow): medial head
 - Primarily muscular insertion

*From Resnick, Skeletal Radiol 2009; 38:171
Triceps Tear: partial thickness tear

- Superficial layer torn
 - Long and lateral heads
- Intact deep layer (medial head)
- Associated enthesophyte bone fragment
 - 1 – 2 cm in size
 - 2.5 – 4 cm retraction
 - No donor site

J Ultrasound Med 2011; 30:1351

Case #3: Take Home Points

- Triceps brachii: two distal tendons
- Partial-thickness tear:
 - Superficial: long and lateral heads
 - Avulsion olecranon bone fragment
 - Intact deep medial head

Case #4: Common Extensor Tendon

- Findings:
 - Hypoechoic swollen common extensor tendon
 - Hyperemia
 - Normal radial collateral ligament
- Diagnosis:
 - Tendinosis of common extensor tendon

Lateral Collateral Ligament Complex

- Radial collateral ligament (arrows)
- Common extensor tendon (E)
- Annular ligament (arrowhead)
- Lateral ulnar collateral ligament (curved arrow)
Lateral Collateral Ligament Complex

- Common extensor tendon (curved arrows)
- Radial collateral ligament (arrowheads)
- Annular ligament (a)

Epicondylitis:

- Common flexor and extensor tendons
- Abnormal hypoechochogenicity
 - Mucoid degeneration, tendinosis
- Anechoic: partial-thickness tear
- No inflammatory cells*

Potter, Radiology 1995; 196:43
Connell, AJR 2001; 176:777

Common Extensor Tendon: elbow

- Often called “tennis elbow” or “lateral epicondylitis” or “epicondylosis” or ……
- All terms are misnomers
- Those inflicted usually do not play tennis (professionally or correctly)
- It is not inflammatory
- It is not a primary problem of the epicondyle

Potter, Radiology 1995; 196:43
Connell, AJR 2001; 176:777

Case #4: Take Home Points

- The term “epicondylitis” is a misnomer
- Tendinosis and tendon tear
- No inflammation
- Radial collateral ligament tear: poor prognosis

Case #5: Ulnar Collateral Ligament

Neutral Dynamic: Valgus Stress
Case #5:

- **Findings:**
 - Non-visualization of ulnar collateral ligament
 - Widening of medial elbow joint with valgus stress
- **Diagnosis:**
 - Ulnar collateral ligament tear: complete

Ulnar Collateral Ligament

- **Valgus stress:** 30 degrees elbow flexion
 - Unlock the olecranon
 - Stress the UCL anterior band
- **Gravity stress** is adequate, equal to Telos¹
- **Ultrasound measurements:**
 - Reliable and precise²

Ulnar Collateral Ligament: valgus stress

- >1 mm asymmetric gapping = 87% accuracy in diagnosis of UCL tear
 - MR arthrography accuracy = 88%
 - US + MR arthrography: accuracy = 98%
- Asymmetric joint space widening with stress:
 - Normal: 1.3 mm or less
 - Partial tear: 1.2 – 3.0 mm
 - Full thickness tear: 2.8 – 4.8 mm

Roedl JB et al. Radiology 2016

Case #5: Take Home Points

- Ultrasound can diagnosis UCL tears
- Dynamic imaging is essential:
 - Complete vs. partial tear
 - Intact but lax ligament
 - Complements MR arthrography

Case #6: Ulnar Collateral Ligament of Thumb

- Findings:
 - Non-visualization of ulnar collateral ligament
 - Hypoechoic round structure proximal to adductor aponeurosis and MCP joint
- Diagnosis:
 - Displaced ulnar collateral ligament tear: Stener lesion

Gamekeeper’s Thumb

- Injury of the ulnar collateral ligament (UCL) of the thumb
 - Historically, chronic injury in Scottish gamekeepers
 - Frequently, due to acute MCP joint hyperabduction
 - Skier’s thumb: up to 86% of thumb base injuries

Acute Mechanism
- Mandals
- Rabbit

Chronic Mechanism
Ulnar Collateral Ligament: thumb

Note: sliding of adductor aponeurosis with isolated interphalangeal joint flexion

Radiographics 2006;26:1007

Stener Lesion:
- Displaced proximal stump of torn UCL
 - Hypoechoic & round
 - Proximal to MCP joint
 - At proximal edge of adductor aponeurosis
- No tissue spanning MCP joint
- “Yo-yo on a string” sign
- Ultrasound: 100% accuracy

Melville D. et al. Skeletal Radiology 2013; 42:667
Case #6: Take Home Points
- Ultrasound is accurate for diagnosis of Stener lesion
- Stener: interposed aponeurosis
- Dynamic imaging is important:
 - Fluid tracks through ligament tear
 - Visualize the adductor aponeurosis

Case #7: flexor tendons of finger

Case #7:
- Findings:
 - Non-visualization A2 – A4 pulleys
 - Bowstringing of flexor tendons
- Diagnosis:
 - Pulley tears

Pulley Tear
- A2 and A4 pulleys: most important
- Sagittal image
 - Bowstringing
 - Hypoechoic edema / hemorrhage
- Dynamic evaluation*

*Radiology 2002; 222:755
Radiology 1998; 206:339

A2 – 4 Pulley Injury
- A2 and A4 pulleys: most important
- Sagittal image
 - Bowstringing
 - Hypoechoic edema / hemorrhage
- Dynamic evaluation*

A4 Pulley Injury: bowstringing
- Normal: < 1 mm; incomplete rupture: 1 – 3 mm; complete: 3 mm
Case #7: Take Home Points
- Non-visualization of pulleys
- Bowstringing of flexor tendons
 - Use dynamic imaging

Case #8: Iliopsoas Tendon

Short Axis

Case #8:
- Findings:
 - Abrupt snapping of psoas major tendon
 - Leg moved from abduction and flexion to straightening
- Diagnosis:
 - Snapping psoas major tendon

Snapping Hip Syndrome: iliopectos

Case #8: Take Home Points
- Snapping iliopsoas
 - Conflict between psoas major tendon and iliacus muscle
 - Abrupt movement when straightening leg from abduction / flexion
Case #9: Pubis

Long Axis:
Adductor Longus

Short Axis:
Common Aponeurosis

Findings:
- Hypoechoic swelling of common aponeurosis
- Cortical irregularity of pubis
- Hypoechoic swelling of adductor longus

Diagnosis:
- Common aponeurosis injury “Sports Hernia”

Sports Hernia?:
- Bulge posterior wall of inguinal canal
 - Direct inguinal hernia
- Osteitis pubis
- Common aponeurosis abnormality:
 - Rectus abdominis and adductors tendons
- Obturator nerve entrapment

Garvey JFW, et al. Hernia 2010; 14:17

Rectus Abdominis + Adductor: “Sports Hernia”

Note: common aponeurosis

From: RadioGraphics 2008; 28:1415

Rectus Abdominis / Adductor Tendinosis: “Sports Hernia”

Author: Joe Lemire, Hemisphere Magazine, Feb. 2015
Case #9: Take Home Points

• Several proposed causes for “Sports Hernia”
• Injury to common aponeurosis is one cause
 – Between rectus abdominis and adductor longus

Case #10: Patellar Tendon

• Findings:
 – Hypoechoic enlargement of proximal patellar tendon
 – Hyperemia
 – Cortical irregularity
• Diagnosis:
 – Tendinosis (Jumper’s Knee)

Patellar Tendinosis:

• Jumper’s knee
• Hypoechoic swelling
• Mucoid degeneration, possible interstitial tearing
• Hyperemia: neovascularity
• No inflammatory cells

Radiology 1996; 200:821

Case #10: Take Home Points

• Focal hypoechoic swelling of proximal patellar tendon
• Jumper’s knee
• Hyperemia = neovascularity
 – Correlates with pain

Case #11: Medial Head, Gastrocnemius
Case #11:

• Findings:
 – Hypoechoic hemorrhage
 – Distal muscle retracted proximal to aponeurosis
• Diagnosis:
 – Tear, medial head of gastrocnemius

Gastrocnemius, Soleus, and Plantaris: distal

Plantaris Tear

Soleus Hematoma
Case #11: Take Home Points

- Abnormal hypoechoic hemorrhage at normal distal tapering
- Hemorrhage
- Characteristic location for tear of medial head of gastrocnemius

Case #12: Achilles

- Findings:
 - Complete Achilles discontinuity
 - Intact plantaris tendon: medial
- Diagnosis:
 - Achilles full-thickness tear

Achilles Tendon: complete tear

- Full-thickness fiber disruption
- Herniation of hyperechoic fat into tendon gap
- Posterior shadowing at torn tendon ends

Achilles Tendon: complete tear

- Pitfall: intact plantaris tendon
 - Medial aspect of Achilles tendon
 - Misinterpreted as intact Achilles fibers

Radiology 2001; 220:406
Achilles Tendon: Dynamic Imaging

- Increase accuracy for full-thickness tear:
 - Widening of gap with passive dorsiflexion
 - Lack of tendon movement across tear
- Determine if ends approximate
 - Conservative versus surgical treatment

Achilles Tendon: dynamic imaging

Achilles Tendon: healing tear

Case #12: Take Home Points

- Dynamic imaging:
 - Differentiates partial from full-thickness tear
 - Assesses if stumps approximate
- Pitfall:
 - Do not misinterpret intact plantaris as Achilles fibers

On Line Case #1: Achilles
On Line Case #2

Anterior Talofibular Ligament

Calcaneofibular Ligament

Syllabus on line and other educational material:
www.jacobsonmskus.com

Twitter handle: @jjacobson