PRP: What Is It Good For?

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Disclosures

- Consultant: Bioclinica
- Advisory Board: GE, Philips
- Book Royalties: Elsevier
- I tell people I am from Canada
- Not relevant to this talk

Note: all images from the textbook Fundamentals of Musculoskeletal Ultrasound are copyrighted by Elsevier Inc.

Platelet-Rich Plasma

- Autologous venous blood
- Centrifuged
- Concentrated platelet sample
- Platelets degranulate:
 - Alpha granules: contain 95% of growth factors
 - Secrete additional growth factors (7 days)
 - Bind to cell membrane receptors: healing

Platelets: growth factors

- PDGF: platelet-derived growth factor
- VEGF: vascular endothelial growth factor
- TGF: transforming growth factor b-1
- IGF: insulin-like growth factor
- EGF: epidermal growth factor
- FGF: fibroblast growth factor
- TNF: tumor necrosis factor
- WTF: what’s that factor?

Platelet-Rich Plasma: uses

- Historically:
 - Used in maxilla-fascial surgery: 1990’s
- Other surgeries:
 - Fracture, non-union, bone fusion
- Cosmetics:
 - Alopecia, scars, wrinkles
- Tendon and ligament injuries
- Osteoarthritis

PRP: what’s in the mix

- Platelet count:
 - 500K ideal (in vitro)¹
 - Tenocyte proliferation, migration, collagen type 1 production
 - Less effectiveness if higher, even cell death
- White blood cells:
 - Leukocyte poor or rich concentrations
 - Poor: less catabolic cytokines, more healing²

 ²McCarrel TM et al. JBJS 2012; 94:e143
PRP: Arthrex
- One of many available systems
- Double syringe system
- Leukocyte poor
- No anticoagulant needed
- Venous draw: 15 ml
- Place directly in centrifuge: 5 min
- 2 - 5 ml PRP
- Platelet concentration: 200 – 500K

PRP: injections
- Tendon
- Muscle
- Ligament
- Osteoarthritis
- Cartilage

PRP and Tendon Injection
- **Common extensor tendon: elbow**
 - Randomized controlled: 230 patients
 - PRP + fenestration versus fenestration alone
 - No difference in outcomes at 12 weeks
 - Significant difference in pain scores at 24 weeks: PRP group had less pain

Common Extensor Tendon: PRP
- 22-gauge needle
- In plane with transducer and long axis to tendon
- Fenestrate during PRP injection
- Most common: one treatment

Common Extensor Tendon
- PRP (72%) vs fenestration (56%)
 - Both improved
- PRP, fenestration, steroid (in tendon):
 - No significant difference
- PRP vs whole blood: no difference

Common Extensor Tendon:
- PRP vs steroid (+fenestration)
 - **PRP significantly better at 2 years**
- Metanalysis: inconclusive
PRP and Tendon Injection

- Gluteal Tendons: greater trochanter
 - Randomized controlled: 30 patients
 - PRP versus fenestration alone
 - Significant improvement at weeks 1 and 2
 - Approximately 80% had long term improvement: up to 1 year follow-up
 - No difference between treatment groups

PRP and Tendon Injection

- Patellar tendon
 - Randomized controlled: 23 patients
 - PRP + fenestration versus fenestration alone
 - PRP outcomes better at 12 weeks
 - No significant difference in outcomes when greater than 26 weeks

PRP: proximal patellar tendon

Pre-procedure

PRP injection
PRP and Tendon Injection

• Achilles tendon
 – Randomized controlled: 54 patients
 – PRP versus saline injection
 – No significant difference in outcomes
 • At 24 weeks\(^1\)
 • At 1 year\(^2\)

\(^1\) de Vos RJ et al. JAMA 2010; 303:145

PRP and Tendon Injection

• Plantar fascia
 – PRP versus corticosteroid (40 patients)
 – PRP more effective and durable

Monto et al. Foot Ankle Int 2014; 35:313

PRP and Muscle Injection

• Proximal hamstring
 – PRP versus rehabilitation only
 – Randomized controlled: 28 patients
 – PRP group: full recovery earlier
 – 27 days versus 42 days (average)

PRP and Muscle Injection

• Gastrocnemius: rat model
 – PRP versus saline injection: 46 rats
 – Followed to 14 days
 – Outcome: strength and histologic analysis
 – No significant difference between groups

PRP and Muscle Injection

• Hamstring
 – PRP versus rehabilitation alone
 – 10 National Football League players
 – Median time: return to play
 – PRP = 20 days vs. rehabilitation = 17 days
 – No significant difference between groups

PRP and Ligament Injection
- Ulnar collateral ligament: elbow
 - Partial tear on MRI
 - 34 athletes: followed for 70 weeks
 - 88% returned to play, average 12 weeks
 - Joint space widening:
 - Decreased from 28 to 20 mm
 - Change in widening: 7 to 2.5 mm

PRP and Knee Osteoarthritis
- Several studies evaluating PRP and knee OA
- Most studies show superior results with leukocyte-poor PRP compared with saline or hyaluronic acid
- Mild OA responds better
- No anatomic information
- One study showed same results with 1 or 2 injections

Wang D. et al. JBJS Reviews 2017; 5:1

PRP and Cartilage
- Meta-analysis: 21 papers
- Increased chondrocyte and mesenchymal stem cell proliferation
- Proteoglycan and Type II collagen deposition
- Increase chondrocyte viability
- Migration of stem cells
- Hyaline vs. fibrocartilage?

Smyth N. et al. Arthroscopy 2013

Labrum: PRP
- Platelet-rich plasma injection
- Inject into labral tear (yellow arrow)
- Efficacy unknown

White arrowheads = needle

PRP: issues
- Different PRP systems
 - Variable platelet concentrations
 - Leukocyte poor versus rich
- Studies:
 - Variable controls, often unblinded
 - Often not compared to other treatments
 - Variable follow-up time points
 - How many injections?
 - Acute versus chronic conditions?
 - Which tendon?

PRP: where are we today?
- Promotes healing, does not cause harm
- Need: randomized controlled trials
- Meta-analysis:
 - No conclusive evidence to support PRP use
 - Supports ultrasound-guided leukocyte-rich PRP for tendinopathy
 - Supports use for knee osteoarthritis
- Accuracy? What about cost effectiveness

1Sheth U. et al. JBJS 2012; 94:298
2Fitzpatrick J. et al. AJSM 2017; 45:226
3Wang D. et al. JBJS Reviews 2017; 5:1
Syllabus on line and other educational material:
www.jacobsonmskus.com
Twitter handle: @jacobsn