Image Optimization and Interpretation

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Disclosures
• Consultant: Bioclinica
• Advisory Board: Philips
• Book Royalties: Elsevier

Ultrasound versus MRI:
• Inexpensive
• Examine multiple joints
• Better tolerated by patient
• Higher resolution
• Guide needle aspiration
• Improved evaluation of distal extremities

MRI versus Ultrasound:
• Examine entire joint
• Intraarticular assessment
 – Cartilage
• Intraosseous abnormalities
• Deep structures
• Less operator dependent

Outline:
• Basic Physics
• Ultrasound Equipment
• Scanning Technique
• Image Interpretation

Sound Wave Frequencies
• Human hearing: 20 Hz to 20KHz
• Low frequency, low intensity treatment: 40 KHz
 – Non-contact wound treatment
• Low intensity pulsed (1.5 MHz): bone healing
• High intensity focused ultrasound: HIFU
 – 200 KHz – 4 MHz: tissue necrosis
• Diagnostic imaging: 1 – 20 MHz
Probe: piezoelectric crystal
- Electricity converted to vibrations
- Sound wave reflects at interfaces
- Bright echo: high impedance differences
 - Bone – soft tissue
 - Air – soft tissue
- Crystal receives echo → image

Sound Wave
- Reflection:
 - Specular: mirror-like
 - Scattering or diffuse
- Refraction
- Absorption
- Attenuation

Outline:
- Basic Physics
- Ultrasound Equipment
- Scanning Technique
- Image Interpretation

Equipment: probe selection
- Frequency determines resolution
 - High frequency = high resolution
 - Poor depth penetration
- Superficial structures: 10 – 17 MHz
 - Distal extremities and peripheral nerves
- Deep: 5 – 7 MHz linear or curvilinear
 - Thigh or hip

Ultrasound Probes
- 12 - 5 MHz Linear
- 15 - 7 MHz Compact linear
- 9 - 4 MHz Curvilinear

Normal Thigh Musculature
- Linear 12 MHz
- Curved 7 MHz
Equipment: cart-based
- Advantages:
 - Powerful: fast, software
 - High resolution: 15 – 17 MHz
- Disadvantages:
 - Not portable
 - Relatively expensive

Equipment: portable
- Advantages:
 - Small size
 - Less expensive
- Disadvantages:
 - Possible decreased resolution of superficial structures

Outline:
- Basic Physics
- Ultrasound Equipment
- Scanning Technique
- Image Interpretation

Scanning: basics
- Holding transducer:
 - Anchor hand/transducer
 - 5th finger or hand on patient
- Coupling gel
- Imaging plane:
 - Long axis of transducer

Scanning: basics
- Beam is focused
 - Narrower than transducer width
 - < 2 mm
- Sweep transducer slowly
 - Only millimeters at a time
Scanning: basics
1. Select appropriate transducer
2. Adjust depth
3. Optimize focal zone location
4. Adjust gray scale gain

Image Appearance:
- Top of image: skin surface
- Bottom of image: deep away from transducer
- When imaging long axis of structure:
 - Left side of image: proximal
 - Right side of image: distal

Adjust Depth

Adjust Focal Zones

Adjust Gray Scale

Supraspinatus
Long Axis
Scanning Technique
- Structured protocol:
 - Specific sequence
 - Checklist of structures
 - Rotator cuff
- Focused exam:
 - Other sites
 - Signs and symptoms
 - Do not focus exam too much!

Ergonomics
- Transducer hand lower than shoulder
- Elbow near side (arm not extended)
- Hand touching patient
- Chair
- Monitor with 45 degrees of patient to avoid excessive back torsion

Outline:
- Basic Physics
- Ultrasound Equipment
- Scanning Technique
- Image Interpretation

Ultrasound Appearance:
- Tendon: hyperechoic, fibrillar
- Muscle: relatively hyperechoic
- Bone cortex: hyperechoic, shadowing
- Fluid: anechoic, posterior enhancement

Artifacts:
- Anisotropy
- Shadowing
- Attenuation
- Reverberation
- Increased through transmission
- Refraction
Anisotropic Effect:
• Tendon not imaged perpendicular to sound beam
• Appears artifactually hypoechoic
• May simulate pathology
• Tendon, ligament, muscle

Scanning: basics
• Heel-toe maneuver
 – Evaluating long axis of tendon
 – Eliminate anisotropy
• Toggle
 – Evaluating short axis of tendon
 – Help identify tendon
 – Eliminate anisotropy

Anisotropy: supraspinatus tendon

Shadowing
• Occurs at interface with high impedance differences
• Surface of object is irregular
• Sound beam is absorbed
• Bone, calcification, gas
• Foreign bodies

Anisotropy: supraspinatus

Longitudinal
Attenuation
- Occurs where soft tissues are dense or many interfaces
- Sound beam is partially absorbed
- Fibrous tissue
- Fatty infiltration of muscle
- Consider low frequency transducer

Reverberation
- Occurs when sound beam hits smooth surface
- Sound beam reflected back and forth between object and transducer
- Ring down linear echoes
- Metal, glass, bone cortex

Increase Through Transmission
- Occurs when sound beam passes through fluid or homogeneous mass
- Sound beam brighter deep to object
- Fluid
- Solid mass: nerve sheath tumor, metastasis, etc.

Refraction
- Occurs when sound beam hits edge of tendon at site of tear
- Oblique shadow
- Patellar and Achilles tendon tears

Tendon: supraspinatus
- Deltoid
- Humerus
- Normal
- Tear

Muscle: triceps
- Normal
- Tear
Ligament: anterior talofibular

Tear Normal

Bone: greater tuberosity

Fracture Normal

Hyaline Cartilage: hypoechoic

*Hyperechoic surface layer = glycosaminoglycan depletion
From: Han TS et al. Ultrasonography 2015; 34:115

Normal Peripheral Nerve

• Ultrasound appearance:
 – Hypoechoic nerve fascicles
 – Hyperechoic connective tissue
• Short axis:
 – Honeycomb appearance

Ulnar Nerve Entrapment: elbow

Compression Normal

Abscess: shoulder

Short Axis Long Axis
Color and Power Doppler

- **Color Doppler:**
 - Blood flow direction relative to transducer
 - Red (toward) and blue (away) colors
- **Power Doppler:**
 - Direction independent
 - More sensitive than color Doppler

Optimization: color Doppler

- Lower velocity scale (or pulse repetition frequency) without creating noise
- Lower filter (which usually automatically happens when scale is reduced)
- Narrow region of interest
 - Which increases frame rate
- Increase color gain until background artifact appears, then reduce until gone
- Float transducer to minimize pressure

Color Doppler Imaging

- Increased blood flow or hyperemia
 - Neovascularity: tumor, tendinosis
 - Inflammation
- Not seen in normal tendon, ligament, or peripheral nerve
- Pitfall:
 - Avoid too much transducer pressure
 - Obscure flow

Sonoelastography

- To assess elastic properties of tissue
- Two methods:
 - Manual compression: operator dependent
 - Shear wave: quantifiable
- Compression of tissue
 - Produces strain or displacement within the tissue
 - Displacement is less when tissue is hard
 - Tendon abnormality is soft

 Klauser, Petron. Sem Musculoskel Rad 2011; 14:323

Elastography:

- Achilles
 - Accuracy = 97% compared with clinical exam
 - Strong correlation with routine ultrasound
- Common extensor tendon (elbow)
 - Accuracy = 94% compared with clinical exam
 - Strong correlation with routine ultrasound
 - Identified abnormalities of radial collateral lig

 Klauser, Petron. Sem Musculoskel Rad 2011; 14:323
Shear Wave Elastography

- Preliminary studies: limited
- Patellar, Achilles, common extensor tendons
 - 94% sensitive, 85% accurate
 - Gray scale/Doppler: 67%/72%
 - Limited: compared to symptoms
- If better than gray scale, any difference in patient treatment?

Dirricks T et al. Acad Radiol 2016; 23:1204

Take Home Points

- Scanning technique:
 - Use the highest frequency transducer that will allow visualization
 - Stabilize transducer on patient with hand
 - Move transducer small amount at a time
 - Beware: anisotropy
 - Shoulder: protocol

See www.jacobsonmskus.com for syllabus
other educational material

Follow on twitter: @jacobsn