Imaging of Musculoskeletal Infection

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Disclosures:
• Consultant: BioClinica
• Advisory Board: GE, Philips
• Book Royalties: Elsevier

Note: ultrasound images from the textbook Fundamentals of Musculoskeletal Ultrasound are copyrighted by Elsevier Inc.

Objectives:
1. Understand mechanism of musculoskeletal infection
2. Recognize imaging findings of musculoskeletal infection
3. Differentiate osteomyelitis from neuropathic joint

Outline:
• Mechanisms
• Soft tissue infection
• Septic arthritis
• Osteomyelitis
 – Neuropathic joint
 – Discitis

Mechanisms:
• Hematogenous
 – Children, intravenous drug abusers
• Contiguous source
 – Diabetic ulcer
• Direct implantation
 – Penetrating injury
 – Surgery

Infection: hematogenous
• Abscess (pyomyositis)
• Septic bursitis
• Septic arthritis
 – Acromioclavicular, sternoclavicular
 – Sacroiliac
• Osteomyelitis
 – Vascular patterns differ with age
Outline:

- Mechanisms
- Soft tissue infection
- Septic arthritis
- Osteomyelitis
 - Neuropathic joint
 - Discitis

Cellulitis

- Acute inflammation:
 - Dermis, subdermis
 - Erythema, warmth, edema
- Cause: disruption of skin
 - *Staph. Aureus*
 - *Strep. pyogenes*
- Susceptible:
 - Vascular disease
 - Indwelling objects
Cellulitis
- Radiography and CT:
 - Soft tissue swelling
 - Increased density

Cellulitis: ultrasound
- Early (<3 days):
 - Thick subcutaneous tissues, increase echogenicity
- Advanced:
 - Distorted, anechoic channels
- Severe, advanced:
 - Fluctuating purulent fluid
 - Guided aspiration. Efficacy similar to surgery
- Late: abscess formation

J Ultrasound Med 2000; 19:743

Cellulitis: ultrasound
- Early:
- Advanced:

Cellulitis
- MRI:
 - Abnormal fluid signal
 - Isolated: subcutaneous tissues

Differential Diagnosis
- Fat necrosis
 - Pain, palpable, focal
 - Thigh, women
 - No erythema
 - Normal WBC

Necrotizing Fasciitis
- Infection:
 - Into deep fascia: progressive
 - Necrosis: subcutaneous
- Gas-forming:
 - Anaerobes, aerobic gram negative
- Life threatening emergency
 - 70 – 80% mortality if delayed diagnosis

From: RadioGraphics 2007; 27:1723
Necrotizing Fasciitis

- Deep fascia
 - Thick, enhancing
 - Non-specific
- Gas:
 - Radiography, CT
 - MRI: signal void
 - US: echogenic, dirty shadow
- Muscle abscesses

Abscess

- Staph. aureus: 77%
- Direct spread or hematogenous
- Usually one muscle:
 - Quads > gluteal > iliopsoas
- Pyomyositis: bacterial
 - Common: HIV

Abscess: Radiography and CT

- CT:
 - Fluid collection + ring enhancement
- Ultrasound:
 - Fluid: hypoechoic to hyperechoic
 - May appear solid
- MRI:
 - Fluid signal + ring enhancement
 - T1w: high signal rim

Abscess: ultrasound

- Anechoic
- Hypoechoic
- Isoechoic
- Hyperechoic

- Dynamic compression
- Through-transmission

MRI Abscess: calf

- T1w
- T2w + FS
- Gado
Differential Diagnosis

- Diabetic muscle infarction
- Imaging:
 - Not homogeneous fluid signal
 - Relatively normal muscle architecture
- History:
 - Diabetes
 - Long standing
 - Normal WBC
- Thigh > calf

Infective Tenosynovitis

- Uncommon
- Puncture, bite: hand, foot
- Hand: anatomy
 - Flexor tendon sheaths:
 - Thumb connects to little finger
 - Extensors: separate sheaths
- Imaging:
 - Fluid distention: complex
 - Synovitis

Septic Bursitis

- Direct inoculation
- Olecranon & prepatellar
- Spread from joint
- Radiography:
 - Swelling, possible gas
- Ultrasound / MRI:
 - Fluid collection in expected location of a bursa
 - Possible gas

Retained foreign body

- Surgical material
- Gossypiboma
- Looks like heterogeneous fluid
- Low signal gas on MRI

Infective Tenosynovitis: wrist

- Axial T2w + FS
- Axial post-gad
Prepatellar Bursitis

Trochanteric Bursa: infection + gas

Cat scratch disease = infection
- Animal scratch: usually a cat – Bartonella henselae
- Child or adolescent: – Most common
- Elbow: – Lymphadenopathy – Epitrochlear lymph node (medial)

Outline:
- Mechanisms
- Soft tissue infection
- Septic arthritis
- Osteomyelitis
 – Neuropathic joint
 – Discitis

Septic Arthritis
- Hematogenous:
 – S. aureus > Streptococcus
- Usually large joint
- Also, joints with acronyms
 – ACJ, SCJ, SU
 – Small vessels, slow flow
 – Increased risk of infection
- Irreversible joint damage: – 48 hours
Septic Arthritis

- **Radiography / CT:**
 - Periarticular osteopenia
 - Joint space widening
 - Acute lax joint, chronic infection
 - Uniform joint space narrowing
 - Indistinct subchondral bone plate
 - Erosions
 - Bone destruction

- **Ultrasound:**
 - Joint effusion:
 - Variable echogenicity
 - Anechoic to echogenic
 - Hyperemia:
 - Lack of flow does not exclude infection*
 - Synovial thickening
 - Guided aspiration

*AJR 1998; 206:731

MRI:

- Synovial enhancement (98%)
- Perisynovial edema (84%)
- Adjacent marrow edema (84%)
- Joint effusion:
 - 91% of large joints
 - 54% of small joints
- Synovial thickening (22%): atypical infection

AJR 2004; 182:119

Joint Recesses:

- Shoulder: biceps, posterior
- Elbow: posterior
- Wrist: dorsal
- Hip: anterior femoral neck
- Knee: superior, medial, lateral to patella
- Ankle: anterior
- MCP, MTP: dorsal recesses

Septic Joint: sternoclavicular

Septic Joint: fungal

10 days later
Septic Joint: fungal

Septic Arthritis: diagnosis
- Joint aspiration:
 - Fluoroscopic or ultrasound-guided
- Prior to fluoroscopic aspiration:
 - Must have cross-sectional imaging
 - Exclude overlying bursa or abscess
 - Avoid contamination of a sterile joint by passing needle through overlying bursa
 - Screen for post-operative fluid collections

Septic Arthritis: diagnosis

Iliopsoas Bursal Fluid

Axial T1w post-gadolinium

Hip Arthroplasty: infection

Coronal Radiograph

Outline:
- Mechanisms
- Soft tissue infection
- Septic arthritis
- Osteomyelitis
 - Neuropathic joint
 - Discitis

Osteomyelitis
- Staphylococcus aureus
- HIV: atypical Mycobacteria
- Blood cultures:
 - Only positive in 50% (hematogenous)
- Radiographs:
 - Abnormal after 14 – 21 days
- Serology:
 - ESR elevated
 - WBC: often elevated
 - Fever: variable

From: RadioGraphics 2007; 27:1723

Osteomyelitis
Contiguous Source
Osteomyelitis: mechanism

- Hematogenous:
 - Infection begins in medullary space of bone
 - Spreads out from bone
 - Children, intravenous drug abusers, septic
- Contiguous source:
 - Soft tissue abnormality (ulcer) extends to bone
- Direct implantation
 - Surgery (2%), cat bite, puncture wound

Osteomyelitis: acute versus chronic

- Acute:
 - Bone destruction
 - Periostitis: in children (loose periosteum)
- Chronic:
 - Extensive periostitis, sclerosis
 - Brodie’s abscess
 - Sequestrum, cloaca, involucrum

Osteomyelitis: adult versus child

- Adult:
 - Often direct spread: ulcer
 - Periostitis: only when subacute / chronic
- Child:
 - Hematogenous
 - Metaphyseal equivalent (100%)*
 - Single bone (63%), contiguous bones (37%)*
 - Subperiosteal abscess: early finding**
 - Periostitis: early sign (acute)
 - Adjacent soft tissue abscess (55%)*

- If ulcer:
 1. Extends from ulcer to bone
 2. Cortex disrupted
 3. T1w: low signal
 4. T2w: high signal
 5. Contrast: + enhancement

- If no ulcer:
 - Look for permeative appearance of bone
 - Up to 3 weeks to identify

Acute Osteomyelitis: MRI: criteria

- If ulcer:
 1. Extends from ulcer to bone
 2. Cortex disrupted
 3. T1w: low signal
 4. T2w: high signal
 5. Contrast: + enhancement

 *More criteria, higher likelihood of osteomyelitis

Osteomyelitis: MRI

- Inversion recovery and T2w fat saturation:*
 - Highest sensitivity for osteomyelitis (not specific)
 - Highest negative predictive value
- T1-weighted images:**
 - Adds specificity
 - If high T2w and normal T1w: reactive edema
- Intravenous gadolinium:
 - If normal T2w: contrast not needed**
 - Delineates soft tissues: abscess

 *Radiology 1998; 207:625
 **AJR 2005; 185:386
 ***AJR 2009; 192:1232
Osteomyelitis: MRI

- MRI with fat-suppression and contrast:
 - 88% sensitivity, 93% specificity*
- MRI unenhanced:
 - 98% sensitivity, 75% specificity**
- Decreased T1w marrow signal concordant with abnormal signal on T2w and post-intravenous contrast images
 - 100% osteomyelitis***

*Radiology 1993; 189:251
**Radiology 1991; 180:533
***AJR 2005; 185:386

Osteomyelitis: adult diabetic

<table>
<thead>
<tr>
<th>Soft tissue ulcer?</th>
<th>T2w: High Signal</th>
<th>Normal (probably)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>T1w Signal</td>
<td>No osteomyelitis</td>
</tr>
<tr>
<td>High</td>
<td>Normal</td>
<td>Reactive Edema</td>
</tr>
<tr>
<td>Low</td>
<td>Osteomyelitis</td>
<td></td>
</tr>
</tbody>
</table>

Supporting Evidence: cortical destruction

Osteomyelitis: 5th metatarsal

- T2w + FS
- T1w + FS
- Sagittal T1w

Osteomyelitis: 1st distal phalanx

- Coronal T1w
- Sagittal T2w + FSS
- T1w

Osteomyelitis: hematogenous

- Sagittal T1w
- Sagittal T2w + FS

Diagnosis: Coccidiomycosis

Reactive Edema

- T1w
- T2w + fat sat
Subperiosteal Abscess: tibia

Osteomyelitis: femur

Osteomyelitis: chronic

- Radiography:
 - Remodeled, sclerotic, lucent
 - Exuberant periostitis
- CT:
 - Sequestrum:
 - Scan without and with contrast
- MRI:
 - Less fluid signal
 - Brodie's abscess

*Radiology 1998; 207:625
**AJR 2005; 185:386
***Radiology 1997; 203:849

Chronic Osteomyelitis

Chronic Osteomyelitis: Terminology:
- Brodie's abscess: chronic abscess of bone with surrounding fibrosis/sclerosis
- Sequestrum: dead bone separated from normal bone
- Cloaca: passage into bone leading to cavity and sequestrum
- Involucrum: envelope of new bone surrounding sequestrum
Chronic Osteomyelitis: sequestrum, periostitis

- Can become septic after percutaneous aspiration

Neuropathic Foot

- Loss of proprioception and deep sensation
- Relaxation, hypotonia
- Recurrent injury
- Malalignment
- Joint destruction and disorganization
 - Diabetes: lower extremity, esp. midfoot
 - Syrinx: upper extremity, spine

Neuropathic Foot vs Osteomyelitis

- Absence of ulceration:
 - Osteomyelitis unlikely: no need for MRI*
- Other findings: exclude infection:
 - Location: midfoot
 - Thin rim enhancement of effusion
 - Subchondral cysts, intra-articular bodies
- Findings: superimposed infection**
 - Sinus track, abnormal soft tissues, fluid collection
 - Diffuse abn marrow: low T1, high T2, +enhancement

*J Am Coll Radiol 2008; 5:881
**Radiology 2006; 238:622

Radiology 2002; 224:649
Discitis

- **Adult:**
 - Begins subchondral bone: anterolateral
 - Spreads into disc and next vertebra
- **Child:** may begin in disc (usually < 7 years old)
 - Annulus fibrosus: vascular / lymphatic supply up to 20 years

Discitis: acute

- **Radiography:**
 - Ill-defined endplate
 - Possible disc space narrowing
 - Focal lucency: anterior subchondral bone
- **MRI:**
 - Endplates: fluid signal
 - Disc: fluid signal
 - May not be uniform
 - Paraspinal abscesses: TB

Sem Musculoskel Radiol 2004; 8:215
Discitis: acute

Differential Diagnosis
- Degenerative changes:
 - Modic 1: fluid signal
 - Modic 2: fat signal
 - Modic 3: low signal
- Signal of disc: helpful
 - If low: degeneration
 - If high: suspect infection

Take Home Points:
- Osteomyelitis: adult
 - Look at bone adjacent to ulcer
 - Radiograph: loss of cortical line
 - MRI:
 - High T2, low T1 = osteomyelitis
 - High T2, normal T1 = reactive edema
- Osteomyelitis: child
 - Subperiosteal abscess, periostitis

Discitis: chronic

- Radiographs / CT:
 - Ill-defined endplates
 - Sclerotic
- MRI:
 - Improvement in fluid signal

Take Home Points:
- Neuropathic joint:
 - No ulcer: osteomyelitis rare
- Septic hip or shoulder:
 - Screen soft tissues with cross-sectional imaging before fluoroscopic aspiration
Syllabus on line and other educational material:
www.jacobsonmskus.com
Twitter handle: @jjacobsn