Interventional MSK Ultrasound: Advanced Procedures

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Disclosures:
• Consultant: Bioclinica
• Advisory Board: Philips
• Book Royalties: Elsevier
• Not relevant to this talk

Note: all images from the textbook Fundamentals of Musculoskeletal Ultrasound are copyrighted by Elsevier Inc.

Outline:
• Calcific tendinosis
• Tendon fenestration
• Tendon injection and PRP
• Soft tissue mass biopsy

Tendon Calcification:
• Degenerative: thin, linear deposit
• Calcific tendinosis:
 – Formative: well-defined, dense shadow
 – Resorptive:
 • Globular, amorphous
 • Variable shadow
 • Best success with aspiration

Degenerative Calcification

Calcific Tendinosis
• Hydroxyapatite deposition: metaplasia
 – Usually do not have cuff tear
• Appearance:
 – 79% hyperechoic & shadowing
 – No shadow: 7%
• Two phases:
 – Formative
 – Resorptive: painful

Farin et al. Skeletal Radiol 1996; 25:551

Calcific Tendinosis

Calcific Tendinosis: resorptive phase

Patient #1

Patient #2: Intra-osseous invasion

Calcific Tendinosis: supraspinatus

Use of Tendon Anisotropy

Long axis

Calcific Tendinosis: aspiration

• Percutaneous lavage and aspiration
 – Best: rounded amorphous calcification
 – Correlate with radiography
• 3-10 cc syringes: Lidocaine
• 20 – 22 gauge needle
• Position patient: syringe is dependent

Subscapularis: calcific tendinosis

Calcific Tendinosis: aspiration

• Inject Lidocaine, then aspirate
 – Dilute calcification
 – Syringe dependent
 – Calcification will flow into needle
 – Repeat until calcification decreases
• Inject steroids into adjacent bursa
Calcific Tendinosis: results
- Calcium decrease correlates with symptom improvement
- Improvement: 91% at 1 year*
- Calcium gone in 89%
- Transitory recurrence at 15 weeks: 44%
- Improved symptoms at 1 year
- No difference at 5, 10 years**

*del Crura, AJR 2007; 189:W128
**Serafini G, Radiology 2009; 252:157

Outline:
- Calcific tendinosis
- Tendon fenestration
- Tendon injections and PRP
Tendon: anatomy
- Primarily: Type 1 collagen
 - Viscoelastic
 - Minor collagens
 - Proteoglycans
 - Glycoproteins
- Tendon fibroblasts or tenocytes
 - Respond to mechanical loading
 - Modulate extracellular proteins

Tendon: injury
- Acute tensile overload
 - Usually underlying abnormal tendon
- Chronic overuse: repetitive excessive loading
 - Loss of normal tendon architecture
 - Change in tenocyte morphology
 - Altered collagen fibril distribution and neovascularity
 - Microtears
 - Resulting underuse may contribute

Tendon: healing
- Inflammatory phase
 - First week after injury
 - Fibrin clot
 - Cell migration, neovascularity
- Proliferation phase
 - 1 to 4 weeks
 - Fibroblasts synthesize collagen and extracellular proteins
- Remodeling phase

Tendinosis or Tendinopathy
- Terms used instead of tendinitis
- No acute inflammatory cells
 - Primarily mucoid degeneration
 - Chondroid metaplasia
- Ultrasound:
 - Hypoechoic tendon
 - Heterogeneous, ill-defined
 - Possible increased thickness

Percutaneous Tendon Treatments
- Corticosteroid
- Fenestration (dry needling, tenotomy)
- Hyperosmolar dextrose, prolotherapy
- Whole blood (autologous)
- Platelet-rich plasma
- Stem cells
- Other: deer antler velvet, amniotic membrane
Peritendon Steroid Injections

- Elbow: common extensor tendon
 - Pain returns worse than before injection¹
- Gluteal:
 - 72% showed improvement at 1 month²
- Hamstring:
 - 24% had symptom relief beyond 6 months³

¹Coombes BK et al. JAMA 2013; 309:461
²Labrosse JM et al. AJR 2010; 194:202
³Zissin MH et al. AJR 2010; 195:993

Steroid Injection: plantar fascia

- Into fascia:
 - 2% risk of plantar fascia rupture¹
 - Temporary pain relief: 4 weeks
 - No difference at 8, 12 weeks compared to saline²
- Deep to fascia: 1st branch of the lateral planter nerve (Baxter’s nerve)
- Superficial to fascia:
 - Risk of fat atrophy theoretical using US guidance

¹Kim C et al. Foot Ank Spec 2010; 3:335
²McMillan AM et al. BMJ 2012; 344:e3260

Prolotherapy

- Injection of an irritant
 - Hyperosmolar dextrose or morrhuate sodium
- Unknown mechanism
 - Irritant attracts inflammatory mediators
 - Stimulate release of growth factors
 - Vascular sclerosant

Distel et al. PMR 2011; 3:S78

Achilles: hyperosmolar dextrose

- 36 patients with chronic tendinosis
- Hyperosmolar dextrose every 6 weeks
- Significant reduction in pain
- Decreased vascularity in 55%

Prolotherapy

- Achilles
 - Transducer: short axis to plantar fascia
 - Needle: in plane with transducer

Steroid Injection: plantar fascia

- Transducer: short axis to plantar fascia
- Needle: in plane with transducer

Courtesy of Mark Cresswell, Vancouver
Tendon Fenestration

- Also called "dry-needling" or tenotomy
- Needle repeatedly passed through areas of tendinosis
- Disrupts area of tendinosis
- Bleeding causes release of growth factors
- Stimulates tendon healing

Fenestration: technique

- No NSAIDS x 2 weeks prior
- Ultrasound guidance: in plane
 - Long axis to tendon
- 20 or 22 gauge needle
- 20 – 30 passes until area soft
- Minimal Lidocaine: over tendon

Percutaneous Fenestration

- 20 or 22-gauge needle
- 20 to 30 needle passes
- Continued until area covered and tendon softens

Non-sterile technique for simulation only!

Fenestration: technique

- Cover entire tendon abnormality
- Contact bone if at tendon abnormality
- Pull needle out of tendon to redirect
- Also redirect medial to lateral
 - Pivoting at needle entrance
 - Cone-shaped area

Fenestration: technique

- Contraindications:
 - Not delineated in literature
 - Prior steroid injection < 3 months ago
 - Bleeding disorders
 - Infection
 - Tendon tear > 50% thickness?

Post-procedure:

- No ice
- Rest for 2 weeks
 - Daily activities okay
 - Gradual return to activities
- Follow-up:
 - Referring physician, physical therapy
- No NSAIDS: 2 weeks
Phases of Tissue Healing

Post-procedure:
• Patellar tendon:
 – Knee brace (locked) x 2 weeks
 – First week non-weight bearing with crutches
 – Nothing?
• Achilles tendon:
 – Walking boot x 2 weeks

Tendons
• Common extensor tendon: elbow
• Patellar tendon
• Gluteal tendons: great trochanter
• Achilles
• Other

Tendon Fenestration
• 14 tendons
• VAS score improved: 4, 12 weeks
• Patellar (5), Achilles (4)
• 1 each: gluteus medius, iliotibial tract, rectus femoris, hamstring, common extensor tendon

Patellar Tendon

- 45 tendons
- 76% improved at 4 weeks, 24% no change
- Improved outcome at 4 weeks if:
 - Less pain prior to procedure
 - Well-defined area of tendinosis at US
 - No correlation with other ultrasound findings (color, size, location, etc.)

Fenestration: pelvis

- 22 tendons in 21 patients
- Gluteus medius (11), hamstring (8),
gluteus minimus (2), tensor fascia lata (1)
- Marked or some improvement: 82%

Gluteus Medius

PRP: Gluteus Minimus
Percutaneous Fenestration: Hamstring

Tensor Fascia Lata

Ilium

Achilles tendon

Discussion: tendon fenestration
• Studies are relatively limited to date
• Most common site:
 – Common extensor tendon (elbow)
 – Other sites have been attempted
• All studies show improvement
• Procedure well-tolerated
 – Potential risk of tendon tear

Discussion: other treatments
• Fenestration is often combined with other treatments:
 – Platelet-rich plasma or whole blood injection
 – Hyperosmolar dextrose or prolotherapy
• Common extensor tendon (elbow):
 – There is no benefit of injecting steroids during tenotomy1
 – Risk of tendon rupture

Discussion: questions
- Do some tendons respond better?
- Young versus old patients?
- What timing (acute versus chronic)?
- Tendinosis versus partial tear?
- Timing of physical therapy?
- Hyperemia on color Doppler?

Whole Blood Injection
- Autologous whole venous blood
- Injected into abnormal tendon during fenestration
- Release of growth factors that will promote healing
- Refractory tendinopathy may be helped
 - Additional studies are needed

 Kampa RJ et al. Int J Clinical Practice 2010; 64:1813

Outline:
- Calcific tendinosis
- Tendon fenestration
- Tendon injections and PRP

Platelet-Rich Plasma
- Autologous venous blood
- Centrifuged
- Concentrated platelet sample
- Platelets degranulate:
 - Alpha granules: contain 95% of growth factors
 - Secrete additional growth factors (7 days)
 - Bind to cell membrane receptors: healing

Platelets: growth factors
- PDGF: platelet-derived growth factor
- VEGF: vascular endothelial growth factor
- TGF: transforming growth factor b-1
- IGF: insulin-like growth factor
- EGF: epidermal growth factor
- FGF: fibroblast growth factor
- TNF: tumor necrosis factor
- TGIF: thank gosh it’s Friday

Platelet-Rich Plasma: uses
- Historically:
 - Used in maxilla-fascial surgery: 1990’s
- Other surgeries:
 - Fracture, non-union, bone fusion
- Cosmetics:
 - Alopecia, scars, wrinkles
- Tendon and ligament injuries
- Osteoarthritis

Platelet-Rich Plasma: who cares?
- Many high-profile athletes claim effectiveness
- Patients are requesting this treatment
- Everyone is doing it
- It works, but may not be best treatment

PRP: what’s in the mix
- Platelet count:
 - 500K ideal (in vitro)¹
 - Tenocyte proliferation, migrations, collagen type I production
 - Less effectiveness if higher, even cell death
- White blood cells:
 - Leukocyte poor or rich concentrations
 - Poor: less catabolic cytokines, more healing²

PRP: Arthrex
- One of many available systems
- Double syringe system
- Leukocyte poor
- No anticoagulant needed
- Venous draw: 15 ml
- Place directly in centrifuge: 5 min
- 2 - 5 ml PRP
- Platelet concentration: 200 – 500K

PRP: safety
- Pain: up to several days
- Risks:
 - Infection: PRP has antibacterial effects
 - Tumor:
 - Insulin-like growth factor (IGF) linked to cancer
 - IGF is not elevated in PRP preparations

²McCarrel TM et al. JBJS 2012; 94:e143

PRP: injections

- Tendon
- Muscle
- Ligament
- Osteoarthritis
- Cartilage

Common Extensor Tendon: PRP

- 22-gauge needle
- In plane with transducer and long axis to tendon
- Fenestrate prior to or during PRP injection
- Most common: one treatment

Common Extensor Tendon: elbow

- 58 patients
 - Outcome: average 28 months
 - Pain level and difficulties with related activities
 - 64% excellent, 16% good, 7% fair, 13% poor
 - No adverse effects
 - Follow-up study: 57 patients
 - 93% excellent or good results
 - Corticosteroid injection not needed

1 McShane JM et al. J Ultrasound Med 2006; 25:1281

Common Extensor Tendon: elbow

- Randomized controlled: 230 patients
 - PRP + fenestration versus fenestration alone
 - No difference in outcomes at 12 weeks
 - Significant difference in pain scores at 24 weeks: PRP group had less pain

Common Extensor Tendon: elbow

- Randomized controlled: 28 patients
 - PRP + fenestration versus fenestration alone
 - Trend for greater clinical improvement in PRP subjects at 2 months
 - No difference in clinical outcome at 6 months

Stenhouse G et al. Skeletal Radiol 2013; 42:1515

Common Extensor Tendon

- PRP (72%) vs fenestration (56%)
 - Both improved
- PRP, fenestration, steroid (in tendon):
 - No significant difference
- PRP vs whole blood: no difference
Common Extensor Tendon:
- PRP vs steroid (+fenestration)
 - PRP significantly better at 2 years
- Metanalysis: inconclusive

PRP and Tendon Injection
- Gluteal Tendons: greater trochanter
 - Randomized controlled: 30 patients
 - PRP versus fenestration alone
 - Significant improvement at weeks 1 and 2
 - Approximately 80% had long term improvement: up to 1 year follow-up
 - No difference between treatment groups

Gluteus Medius

Gluteus Maximus and Minimus
- Randomized controlled: 30 patients
- PRP versus fenestration alone
- Significant improvement at weeks 1 and 2
- Approximately 80% had long term improvement: up to 1 year follow-up
- No difference between treatment groups

PRP and Tendon Injection
- Patellar tendon
 - Randomized controlled: 23 patients
 - PRP + fenestration versus fenestration alone
 - PRP outcomes better at 12 weeks
 - No significant difference in outcomes when greater than 26 weeks
PRP and Tendon Injection

- **Achilles tendon**
 - Randomized controlled: 54 patients
 - PRP versus saline injection
 - No significant difference at 24 weeks\(^1\) and 1 year\(^2\)
- **Metaanalysis**
 - PRP + eccentric physical therapy compared with saline
 - No difference in outcomes: clinical or ultrasound findings\(^3\)

\(^1\)de Vos RJ et al. JAMA 2010; 303:145
\(^3\)Zhang YJ. Clin Orthop Relat Res 2018; 39:1623

PRP and Tendon Injection

- **Plantar fascia**
 - PRP versus corticosteroid (40 patients)
 - PRP more effective and durable

Monto et al. Foot Ankle Int 2014; 35:313

PRP and Muscle Injection

- **Proximal hamstring**
 - PRP versus rehabilitation only
 - Randomized controlled: 28 patients
 - PRP group: full recovery earlier
 - 27 days versus 42 days (average)

Adductor Tear: PRP

- Target: tendon tear
- Efficacy uncertain
PRP and Muscle Injection

- Gastrocnemius: rat model
- PRP versus saline injection: 46 rats
- Followed to 14 days
- Outcome: strength and histologic analysis
- No significant difference between groups

PRP and Muscle Injection

- Hamstring
- PRP versus rehabilitation alone
- 10 National Football League players
- Median time: return to play
 - PRP = 20 days vs. rehabilitation =17 days
- No significant difference between groups

PRP and Ligament Injection

- Ulnar collateral ligament: elbow
 - Partial tear on MRI
 - 34 athletes: followed for 70 weeks
 - 88% returned to play, average 12 weeks
 - Joint space widening:
 - Decreased from 28 to 20 mm
 - Change in widening: 7 to 2.5 mm

PRP and Knee Osteoarthritis

- Several studies evaluating PRP and knee OA
- Most studies show superior results with leukocyte-poor PRP compared with saline or hyaluronic acid
- Mild OA responds better
- No anatomic information
- One study showed same results with 1 or 2 injections

Wang D. et al. JBJS Reviews 2017; 5:1

PRP and Knee Osteoarthritis

- Several studies evaluating PRP, knee OA
- PRP may be slightly better than hyaluronic acid
- Benefits may decrease after 1 year
- Mild OA responds better
- No anatomic information
- Leukocyte-poor preparation is best

PRP and Cartilage

- Meta-analysis: 21 papers
- Increased chondrocyte and mesenchymal stem cell proliferation
- Proteoglycan and Type II collagen deposition
- Increase chondrocyte viability
- Migration of stem cells
- Hyaline vs. fibrocartilage?

Labrum: PRP

- Platelet-rich plasma injection
- Inject into labral tear (yellow arrow)
- Efficacy unknown

White arrowheads = needle

PRP: issues

- Different PRP systems
 - Variable platelet concentrations
 - Leukocyte poor versus rich
- Studies:
 - Variable controls, often unblinded
 - Often not compared to other treatments
 - Variable follow-up time points
 - How many injections?
 - Acute versus chronic conditions?
 - Which tendon?

PRP: where are we today?

- Promotes healing, does not cause harm
- Need: randomized controlled trials
- Meta-analysis:
 - No conclusive evidence to support PRP use
 - Supports ultrasound-guided leukocyte-rich PRP for tendinopathy
 - Supports use for knee osteoarthritis
- Accuracy? What about cost effectiveness

2. Fitzpatrick J. et al. AJSM 2017; 45:226
3. Wang D. et al. JBJS Reviews 2017; 5:1

Take Home Points

- Calcific tendinosis:
 - Inject before aspiration
- Tenotomy:
 - Proven effective at many sites
 - Integral part of other tendon treatments
- Platelet-rich plasma
 - What about cost effectiveness compared to tenotomy?

Syllabus on line and other educational material:
www.jacobsonimkus.com
Twitter handle: @jacobson