Shoulder Ultrasound: Scanning Protocol

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Rotator Cuff Anatomy:
- Supraspinatus
- Infraspinatus
- Teres Minor
- Subscapularis

Rotator Cuff

Ultrasound Appearance:
- Tendon: hyperechoic, fibrillar
- Muscle: relatively hyperechoic
- Bone cortex: hyperechoic, shadowing

Anisotropic Effect
- Tendon is artifactually hypoechoic
- Sound beam is not perpendicular to fibers
- Tendon, ligament > muscle

Anisotropy: subscapularis tendon
US: normal appearance

- Cartilage
 - Hyaline: hypoechoic
 - Fibrocartilage: hyperechoic
- Joint fluid
 - Simple: anechoic
 - Complex: mixed echogenicity

Technique: general

- Follow imaging protocol steps
- For each step, identify key structure
 - Bone landmarks important
- Image structure in two planes
- Include video sweep back and forth beginning over structure

Shoulder Ultrasound: 5 steps

1. Biceps Brachii: 2 images (short and long axis)
2. Subscapularis: 2 images (long and short axis)
3. Supraspinatus and infraspinatus: 6 images (long and short axis)
4. AC joint and impingement: 2 images
5. Posterior shoulder: 4 images
 A. Joint recess and spinoglenoid notch
 B. Infraspinatus and teres minor muscles
 C. Supraspinatus muscle, suprascapular notch

Technique: position #1

- Neutral, supination
 - Hand on lap, palm up
 - Anterior (10-17 MHz)
 - Biceps tendon:
 - Transverse, longitudinal

Long Head of Biceps Brachii Tendon

- Greater Tuberosity
- Lesser Tuberosity
- Humerus

Short Axis

Long Axis
Scanning: basics
- Heel-toe maneuver
 - Evaluating long axis of tendon
 - Eliminate anisotropy

Scanning: basics
- Toggle
 - Evaluating short axis of tendon
 - Help identify tendon
 - Eliminate anisotropy

Technique: position #2
- External Rotation
 - Anterior
 - 10-17 MHz linear
- Subscapularis tendon
 - Longitudinal, transverse
- Biceps dislocation

External Shoulder Rotation
Subscapularis

Technique: position #3
- Internal rotation, extension
 - Back of hand at other back pocket
 - Anterior (7-13 MHz linear)
- Supraspinatus
 - Start longitudinal
 - Infraspinatus
Neutral Position

Internal Rotation

Technique: position #3

- Modified Crass
 - Hand at closest hip pocket
 - Easier to tolerate
 - Long axis: aim toward ear
 - Improved biceps visualization
 - Overestimates size*

Ferri, AJR 2005; 184:160

Modified Crass Position

Supraspinatus Tendon: normal

- Hyperechoic and fibrillar echotexture
- Convex superior surface
- Uniform thickness: transverse

*Overestimates size
Technical Considerations

- > 10 Mhz (prefer at least 12 Mhz)
- Supraspinatus: long axis most important plane
 - Less pitfalls, easy recognition of anatomy
 - >90% accuracy long axis alone
- Biceps tendon (intra- articular)
 - Important landmark: complete evaluation

1Arend CF et al. J Ultrasound Med 2010; 29:1725
Supraspinatus - Infraspinatus Junction

- **Longitudinal:**
 - Flattening of greater tuberosity
 - Tendon striations: anisotropy infraspinatus

- **Transverse:**
 - 1.3 – 2.3 cm posterior to biceps tendon
 - Infraspinatus overlaps supraspinatus
 - Slight volume loss

Technique: position #4

- Neutral position
 - 10-17 MHz linear
 - Acromioclavicular joint
 - Subacromial-subdeltoid bursa
 - Dynamic: impingement

Subacromial-subdeltoid Bursa

Impingement Test
Technique: position #5

- Neutral position: posterior (5 – 12 MHz)
 - A. Posterior glenohumeral joint
 - Joint recess, infraspinatus
 - Labrum, spinoglenoid notch
 - B. Muscle atrophy
 - C. Suprascapular notch
 - Superior labrum

Infraspinatus Tendon & Posterior Labrum

Infraspinatus: Long Axis

No Atrophy

Short Axis (extended field-of-view)

Suprascapular Notch and Superior Labrum

Coronal Plane

Take-home Points

- Must follow a protocol
- Beware: anisotropy
- Understand greater tuberosity footprints
- Dynamic: subacromial impingement

Syllabus on line and other educational material:
www.jacobsonmskus.com

Twitter handle: @jjacobsn