Elbow Interventional Techniques and PRP

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Disclosures:
- Consultant: Bioclinica
- Advisory Board: Philips
- Book Royalties: Elsevier
- Not relevant to this talk

Note: all images from the textbook Fundamentals of Musculoskeletal Ultrasound are copyrighted by Elsevier Inc.

Outline
- Joint
- Bursa
- Cyst
- Tendon treatments

Joint / Bursa: Aspiration and Injection
- Aspiration:
 - Infection, crystal disease
- Injection:
 - Anesthetic: Lidocaine, Ropivacaine
 - Steroids
 - Therapeutic or diagnostic

Elbow Joint
- Olecranon recess
- Elbow flexed
- In plane
- Lateral to medial

Olecranon Bursa
- Arm extended
- Axial plane
- Lateral to medial
- Avoid cubital tunnel
Cyst Aspiration

- Ganglion cyst:
 - Large bore needle
 - Wrist, knee: lobular, anechoic or hypoechoic
- Other cysts:
 - Paralabral cysts: shoulder and hip labrum
 - Paramensical cysts

“Cyst” Algorithm

- Multilocular
- Non-compressible
- Bursa: anatomic or adventitious
- Direct Trauma
- Other
 - Ganglion cyst
 - Paralabral cyst, paramensical cyst
 - Inflammatory:
 - Rheumatoid
 - TB, fungal
 - Pannus
 - Synovial osteochondromatosis
 - Hematoma
 - Seroma
- Solid Neoplasm:
 - Myxoid liposarcoma
 - Synovial Sarcoma

Percutaneous Tendon Treatments

- Corticosteroid
- Fenestration (dry needling, tenotomy)
- Hyperosmolar dextrose, prolotherapy
- Whole blood (autologous)
- Platelet-rich plasma
- Stem cells
- Other: deer antler velvet, amniotic membrane

Tendinosis

- Terms used instead of tendinitis
- No acute inflammatory cells
 - Primarily mucoid degeneration
 - Chondroid metaplasia
- Ultrasound:
 - Hypoechoic tendon
 - Heterogeneous, ill-defined
 - Possible increased thickness

Peritendon Steroid Injections

- Shoulder: minimal transient pain relief
- Elbow: common extensor tendon
 - Pain returns worse than before injection
- Gluteal:
 - 72% showed improvement at 1 month
- Hamstring:
 - 24% had symptom relief beyond 6 months

Coombes BK et al. JAMA 2013; 309:461
Labrosse JM et al. AJR 2010; 194:202
Zissen MH et al. AJR 2010; 195:993
Tendon Fenestration
• Also called "dry-needling" or tenotomy
• Needle repeatedly passed through areas of tendinosis
• Disrupts area of tendinosis
• Bleeding causes release of growth factors
• Stimulates tendon healing

Fenestration: technique
• No NSAIDS x 2 weeks prior
• Ultrasound guidance: in plane
 – Long axis to tendon
• 20 or 22 gauge needle
• 20 – 30 passes until area soft
• Minimal Lidocaine: over tendon

Fenestration: technique
• Cover entire tendon abnormality
• Contact bone if at tendon abnormality
• Pull needle out of tendon to redirect
• Also redirect medial to lateral
 – Pivoting at needle entrance
 – Cone-shaped area

Fenestration: technique
• Contraindications:
 – Not delineated in literature
 – Prior steroid injection < 3 months ago
 – Bleeding disorders
 – Infection
 – Tendon tear > 50% thickness?

Post-procedure:
• No ice
• Rest for 2 weeks
 – Daily activities okay
 – Gradual return to activities
• Follow-up:
 – Referring physician, physical therapy
• No NSAIDS: 2 weeks

Tendon: healing
• Inflammatory phase
 – First week after injury
 – Fibrin clot
 – Cell migration, neovascularity
• Proliferation phase
 – 1 to 4 weeks
 – Fibroblasts synthesize collagen and extracellular proteins
• Remodeling phase

Galloway MT et al. JBJS 2013; 95:1620
Common Extensor Tendon (Elbow)

- 58 patients
- Outcome: average 28 months
 - Pain level and difficulties with related activities
 - 64% excellent, 16% good, 7% fair, 13% poor
 - No adverse effects
- Follow-up study: 57 patients
 - 93% excellent or good results
 - Corticosteroid injection not needed

Discussion: other treatments

- Fenestration is often combined with other treatments:
 - Platelet-rich plasma or whole blood injection
 - Hyperosmolar dextrose or prolotherapy
- Common extensor tendon (elbow):
 - There is no benefit of injecting steroids during tenotomy
 - Risk of tendon rupture

Whole Blood Injection

- Autologous whole venous blood
- Injected into abnormal tendon during fenestration
- Release of growth factors that will promote healing
- Refractory tendinopathy may be helped
 - Additional studies are needed

Kampa RJ et al. Int J Clinical Practice 2010; 64:1813

Whole Blood Injection: Common Extensor Tendon

Biceps Brachii Tendon: whole blood injection

Whole Blood Injection + Fenestration
Platelet-Rich Plasma

- Autologous venous blood
- Centrifuged
- Concentrated platelet sample
- Platelets degranulate:
 - Alpha granules: contain 95% of growth factors
 - Secrete additional growth factors (7 days)
 - Bind to cell membrane receptors: healing

Platelet-Rich Plasma: uses

- Historically:
 - Used in maxilla-fascial surgery: 1990’s
- Other surgeries:
 - Fracture, non-union, bone fusion
- Cosmetics:
 - Alopecia, scars, wrinkles
- Tendon and ligament injuries
- Osteoarthritis

Platelet-Rich Plasma

- Autologous venous blood
- Centrifuged
- Concentrated platelet sample
- Platelets degranulate:
 - Alpha granules: contain 95% of growth factors
 - Secrete additional growth factors (7 days)
 - Bind to cell membrane receptors: healing

PRP: what’s in the mix

- Platelet count:
 - 500K ideal (in vitro)\(^1\)
 - Tenocyte proliferation, migrations, collagen type I production
 - Less effectiveness if higher, even cell death
- White blood cells:
 - Leukocyte poor or rich concentrations
 - Poor: less catabolic cytokines, more healing\(^2\)

\(^2\)McCarrel TM et al. JBJS 2012; 94:e143

PRP: Arthrex

- One of many available systems
- Double syringe system
- Leukocyte poor
- No anticoagulant needed
- Venous draw: 15 ml
- Place directly in centrifuge: 5 min
- 2 - 5 ml PRP
- Platelet concentration: 200 – 500K

Post-procedure:

- Patellar tendon:
 - Knee brace (locked) x 2 weeks
 - First week non-weight bearing with crutches
- Achilles tendon:
 - Walking boot x 2 weeks
- Follow-up: referring physician + physical therapy
PRP: safety

- Pain: up to several days
- Risks:
 - Infection: PRP has antibacterial effects
 - Tumor:
 - Insulin-like growth factor (IGF) linked to cancer
 - IGF is **not** elevated in PRP preparations

PRP: injections

- Tendon
- Muscle
- Ligament
- Osteoarthritis
- Cartilage

Common Extensor Tendon: PRP

- 22-gauge needle
- In plane with transducer and long axis to tendon
- Fenestrate prior to or during PRP injection
- Most common: one treatment

Common Extensor Tendon

- PRP vs fenestration: 230 subjects
 - 24 weeks: PRP higher success (84% vs 68%)
- PRP, fenestration, steroid (in tendon):
 - No significant difference
- PRP vs whole blood: **no difference**

Common Extensor Tendon

- PRP vs steroid (+fenestration)
 - **PRP significantly better at 2 years**
- Metaanalysis: **inconclusive**
- PRP is superior to steroids
- PRP is equal to lidocaine
 - Martin GI, J Ortho Surg Res 2019; 23:14

PRP: Gluteus Minimus

- Long Axis
PRP and Tendon Injection

- Gluteal Tendons: greater trochanter
 - Randomized controlled: 30 patients
 - PRP versus fenestration alone
 - Significant improvement at weeks 1 and 2
 - Approximately 80% had long term improvement: up to 1 year follow-up
 - No difference between treatment groups\(^1\)
 - Two injections: more sustained response\(^2\)

\(^1\)Jacobson JA et al. J Ultrasound Med 2016; 35:2413

PRP and Tendon Injection

- Gluteal Tendons: greater trochanter
 - Randomized controlled: 80 patients
 - PRP versus steroid injection
 - Ultrasound-guided: 5 – 6 needle passes
 - Patients with > 4 months of symptoms had greater clinical improvement with PRP at 12 weeks

PRP: proximal patellar tendon

Step #1: tendon fenestration

Fenestration
Post-fenestration

PRP and Tendon Injection

- Patellar tendon
 - Randomized controlled: 23 patients
 - PRP + fenestration versus fenestration alone
 - PRP better at 12 weeks, no different at 26 weeks\(^1\)
 - PRP no better than saline\(^2\)

PRP and Tendon Injection

- Achilles tendon
 - Randomized controlled: 54 patients
 - PRP versus saline injection
 - No significant difference at 24 weeks\(^1\) and 1 year\(^2\)

- Metaanalysis
 - PRP + eccentric physical therapy compared with saline
 - No difference in outcomes: clinical or ultrasound findings\(^3\)

\(^1\) de Vos RJ et al. JAMA 2010; 303:145
\(^3\) Zhang YJ. Clin Orthop Relat Res 2018; 39:1623

PRP and Tendon Injection

- Rotator cuff
 - PRP not beneficial\(^1\)

- Supraspinatus
 - Interstitial tear
 - No difference between PRP and saline\(^2\)

\(^1\) Hurley ET et al. Arthroscopy 2019; 35:1584

PRP and Tendon Injection

- Plantar fascia
 - PRP versus corticosteroid (40 patients)
 - PRP more effective and durable

Monto et al. Foot Ankle Int 2014; 35:313

PRP and Muscle Injection

- Proximal hamstring
 - PRP versus rehabilitation only
 - Randomized controlled: 28 patients
 - PRP group: full recovery earlier
 - 27 days versus 42 days (average)

PRP and Muscle Injection

- Gastrocnemius: rat model
 - PRP versus saline injection: 46 rats
 - Followed to 14 days
 - Outcome: strength and histologic analysis
 - No significant difference between groups

Adductor Tear: PRP

- Target: tendon tear
- Efficacy uncertain
PRP and Muscle Injection
- Hamstring
- PRP versus rehabilitation alone
- 10 National Football League players
- Median time: return to play
 - PRP = 20 days vs. rehabilitation = 17 days
- No significant difference between groups

PRP and Ligament Injection
- Ulnar collateral ligament: elbow
 - Partial tear on MRI
 - 34 athletes: followed for 70 weeks
 - 88% returned to play, average 12 weeks
 - Joint space widening:
 - Decreased from 28 to 20 mm
 - Change in widening: 7 to 2.5 mm

PRP and Knee Osteoarthritis
- Several studies evaluating PRP and knee OA
- Most studies show superior results with leukocyte-poor PRP compared with saline or hyaluronic acid
- Mild OA responds better
- No anatomic information
- One study showed same results with 1 or 2 injections

Wang D. et al. JBJS Reviews 2017; 5:1

PRP and Cartilage
- Meta-analysis: 21 papers
- Increased chondrocyte and mesenchymal stem cell proliferation
- Proteoglycan and Type II collagen deposition
- Increase chondrocyte viability
- Migration of stem cells
- Hyaline vs. fibrocartilage?

Labrum: PRP
- Platelet-rich plasma injection
- Inject into labral tear (yellow arrow)
- Efficacy unknown

White arrowheads = needle
PRP and Meniscus

- 15 patients
- US-guided PRP injection
- Meniscal degeneration
- 67% had functional improvement
- Grade 2 degeneration improved to Grade 1

Ozyalvac ON. et al. J Ortho Surg 2019; 28:1

PRP: issues

- Different PRP systems
 - Variable platelet concentrations
 - Leukocyte poor versus rich
- Studies:
 - Variable controls, often unblinded
 - Often not compared to other treatments
 - Variable follow-up time points
 - How many injections?
 - Acute versus chronic conditions?
 - Which tendon?

PRP: where are we today?

- Promotes healing, does not cause harm
- Need: randomized controlled trials
- Meta-analysis:
 - No conclusive evidence to support PRP use
 - Supports ultrasound-guided leukocyte-rich PRP for tendinopathy (still controversial)
 - Supports use for knee osteoarthritis
- Accuracy? What about cost effectiveness

1Sheth U. et al. JBJS 2012; 94:298
2Fitzpatrick J. et al. AJSM 2017; 45:226
3Wang D. et al. JBJS Reviews 2017; 5:1

Take Home Points

- Joint or bursa:
 - Aspiration or injection
- Cyst: large bore needle
- Fenestration / Tenotomy:
 - Is effective, do not inject steroids
- PRP: not proven better than other treatments
 - What about cost effectiveness?

Syllabus on line and other educational material:
www.jacobsonimskus.com
Twitter handle: @jacobson