Interventional MSK Ultrasound: Tendon Treatments and PRP

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Disclosures:
• Consultant: Bioclinica
• Advisory Board: Philips
• Book Royalties: Elsevier
• Not relevant to this talk

Outline
• Tendon treatment overview
• Tendon fenestration / tenotomy
• Whole blood injection
• Prolotherapy
• Platelet-rich plasma

Tendon: anatomy
• Primarily: Type 1 collagen
 – Viscelastic
 – Minor collagens
 – Proteoglycans
 – Glycoproteins
• Tendon fibroblasts or tenocytes
 – Respond to mechanical loading
 – Modulate extracellular proteins

Tendon: injury
• Acute tensile overload
 – Usually underlying abnormal tendon
• Chronic overuse: repetitive excessive loading
 – Loss of normal tendon architecture
 – Change in tenocyte morphology
 – Altered collagen fibril distribution and neovascularity
 – Microtears
 – Resulting underuse may contribute

Tendon: healing
• Inflammatory phase
 – First week after injury
 – Fibrin clot
 – Cell migration, neovascularity
• Proliferation phase
 – 1 to 4 weeks
 – Fibroblasts synthesize collagen and extracellular proteins
• Remodeling phase

Note: all images from the textbook Fundamentals of Musculoskeletal Ultrasound are copyrighted by Elsevier Inc.
Tendinosis
- Terms used instead of tendinitis
- No acute inflammatory cells
 - Primarily mucoid degeneration
 - Chondroid metaplasia
- Ultrasound:
 - Hypoechoic tendon
 - Heterogeneous, ill-defined
 - Possible increased thickness

Percutaneous Tendon Treatments
- Corticosteroid
- Fenestration (dry needling, tenotomy)
- Hyperosmolar dextrose, prolotherapy
- Whole blood (autologous)
- Platelet-rich plasma
- Stem cells
- Other: deer antler velvet, amniotic membrane

Peritendon Steroid Injections
- Shoulder: minimal transient pain relief
- Elbow: common extensor tendon
 - Pain returns worse than before injection
- Gluteal:
 - 72% showed improvement at 1 month
- Hamstring:
 - 24% had symptom relief beyond 6 months

2 Coombes BK et al. JAMA 2013; 309:461
3 Labrosse JM et al. AJR 2010; 194:202
4 Zissen MH et al. AJR 2010; 195:993

Steroid Injection: plantar fascia
- Into fascia:
 - 2% risk of plantar fascia rupture
 - Temporary pain relief: 4 weeks
 - No difference at 8, 12 weeks compared to saline
- Deep to fascia: 1st branch of the lateral planter nerve (Baxter's nerve)
- Superficial to fascia:
 - Risk of fat atrophy theoretical using US guidance

Kim C et al. Foot Ank Spec 2010; 3:335
2 McMillan AM et al. BMJ 2012; 344:e5263

Steroid Injection: plantar fascia
- Transducer: short axis to plantar fascia
- Needle: in plane with transducer
Outline

• Tendon treatment overview
• Tendon fenestration / tenotomy
• Whole blood injection
• Prolotherapy
• Platelet-rich plasma

Tendon Fenestration

• Also called “dry-needling” or tenotomy
• Needle repeatedly passed through areas of tendinosis
• Disrupts area of tendinosis
• Bleeding causes release of growth factors
• Stimulates tendon healing

Fenestration: technique

• No NSAIDS x 2 weeks prior
• Ultrasound guidance: in plane
 – Long axis to tendon
• 20 or 22 gauge needle
• 20 – 30 passes until area soft
• Minimal Lidocaine: over tendon

Percutaneous Fenestration

• 20 or 22-gauge needle
• 20 to 30 needle passes
• Continued until area covered and tendon softens

Non-sterile technique for simulation only!

Fenestration: technique

• Cover entire tendon abnormality
• Contact bone if at tendon abnormality
• Pull needle out of tendon to redirect
• Also redirect medial to lateral
 – Pivoting at needle entrance
 – Cone-shaped area

Fenestration: technique

• Contraindications:
 – Not delineated in literature
 – Prior steroid injection < 3 months ago
 – Bleeding disorders
 – Infection
 – Tendon tear > 50% thickness?
Post-procedure:

- No ice
- Rest for 2 weeks
 - Daily activities okay
 - Gradual return to activities
- Follow-up:
 - Referring physician, physical therapy
- No NSAIDS: 2 weeks

Phases of Tissue Healing

Fenestration: tendons

- Common extensor tendon: elbow
- Patellar tendon
- Gluteal tendons: great trochanter
- Achilles
- Other

Tendon Fenestration

- 14 tendons
- VAS score improved: 4, 12 weeks
- Patellar (5), Achilles (4)
- 1 each: gluteus medius, iliotibial tract, rectus femoris, hamstring, common extensor tendon

Common Extensor Tendon (Elbow)

Common Extensor Tendon: elbow

- 58 patients
- Outcome: average 28 months
 - Pain level and difficulties with related activities
 - 64% excellent, 16% good, 7% fair, 13% poor
 - No adverse effects
- Follow-up study: 57 patients
 - 93% excellent or good results
 - Corticosteroid injection not needed

Patellar Tendon

- 45 tendons
- 76% improved at 4 weeks, 24% no change
- Improved outcome at 4 weeks if:
 - Less pain prior to procedure
 - Well-defined area of tendinosis at US
 - No correlation with other ultrasound findings (color, size, location, etc.)

Gluteus Medius

- 22 tendons in 21 patients
- Gluteus medius (11), hamstring (8), gluteus minimus (2), tensor fascia lata (1)
- Marked or some improvement: 82%

Percutaneous Fenestration: Hamstring

Tensor Fascia Lata

Sagittal

Achilles tendon

Discussion: tendon fenestration

- Studies are relatively limited to date
- Most common site:
 - Common extensor tendon (elbow)
 - Other sites have been attempted
- All studies show improvement
- Procedure well-tolerated
 - Potential risk of tendon tear

Discussion: other treatments

- Fenestration is often combined with other treatments:
 - Platelet-rich plasma or whole blood injection
 - Hyperosmolar dextrose or prolotherapy
- Common extensor tendon (elbow):
 - There is no benefit of injecting steroids during tenotomy\(^1\)
 - Risk of tendon rupture

\(^1\) McShane JM et al. J Ultrasound Med 2008; 27:1137
Ultrasonic Tenotomy (Tenex)

- Ultrasound phacoemulsification
 - Debride and aspirate necrotic tendon
- Irrigation
- Safe and effective
- No comparison studies
 - Outcomes, cost-effectiveness

Williams RC et al. PM R 2018; 2015; 10:313

Outline

- Tendon treatment overview
- Tendon fenestration / tenotomy
- Whole blood injection
- Prolotherapy
- Platelet-rich plasma

Whole Blood Injection

- Autologous whole venous blood
- Injected into abnormal tendon during fenestration
- Release of growth factors that will promote healing
- Refractory tendinopathy may be helped
 - Additional studies are needed

Kampa RJ et al. Int J Clinical Practice 2010; 64:1813

Outline

- Tendon treatment overview
- Tendon fenestration / tenotomy
- Whole blood injection
- Prolotherapy
- Platelet-rich plasma
Prolotherapy

- Injection of an irritant
- Hyperosmolar dextrose or morrhuate sodium
- Unknown mechanism
 - Irritant attracts inflammatory mediators
 - Stimulate release of growth factors
 - Vascular sclerosant

Distel et al. PMR 2011; 3:S78

Achilles: hyperosmolar dextrose

Courtes Ch of Mark Cresswell, Vancouver

Prolotherapy

- Achilles
 - 36 patients with chronic tendinosis
 - Hyperosmolar dextrose every 6 weeks
 - Significant reduction in pain
 - Decreased vascularity in 55%

Outline

- Tendon treatment overview
- Tendon fenestration / tenotomy
- Whole blood injection
- Prolotherapy
- Platelet-rich plasma

Platelet-Rich Plasma

- Autologous venous blood
- Centrifuged
- Concentrated platelet sample
- Platelets degranulate:
 - Alpha granules: contain 95% of growth factors
 - Secrete additional growth factors (7 days)
 - Bind to cell membrane receptors: healing

Platelet-Rich Plasma: uses

- Historically:
 - Used in maxilla-fascial surgery: 1990’s
- Other surgeries:
 - Fracture, non-union, bone fusion
- Cosmetics:
 - Alopecia, scars, wrinkles
- Tendon and ligament injuries
- Osteoarthritis

PRP: what's in the mix

- Platelet count:
 - 500K ideal (in vitro)\(^1\)
 - Tenocyte proliferation, migrations, collagen type I production
 - Less effectiveness if higher, even cell death
- White blood cells:
 - Leukocyte poor or rich concentrations
 - Poor: less catabolic cytokines, more healing\(^2\)

\(^2\)McCarrel TM et al. JBJS 2012; 94:e143

PRP: Arthrex

- One of many available systems
- Double syringe system
- Leukocyte poor
- No anticoagulant needed
- Venous draw: 15 ml
- Place directly in centrifuge: 5 min
- 2 - 5 ml PRP
- Platelet concentration: 200 – 500K

PRP: safety

- Pain: up to several days
- Risks:
 - Infection: PRP has antibacterial effects
 - Tumor:
 - Insulin-like growth factor (IGF) linked to cancer
 - IGF is not elevated in PRP preparations

\(^1\)Giusti et al. BioMed Res Internat 2014

Common Extensor Tendon: PRP

- 22-gauge needle
- In plane with transducer and long axis to tendon
- Fenestrate prior to or during PRP injection
- Most common: one treatment

Common Extensor Tendon

- PRP vs fenestration: 230 subjects
 - 24 weeks: PRP higher success (84% vs 68%)
- PRP, fenestration, steroid (in tendon):
 - No significant difference
- PRP vs whole blood: no difference

- PRP vs steroid (+fenestration)
 - Metanalysis: inconclusive
- PRP is superior to steroids
 - PRP is equal to lidocaine
 - Martin GI, J Ortho Surg Res 2019; 23:14
PRP and Tendon Injection

- **Gluteal Tendons: greater trochanter**
 - Randomized controlled: 30 patients
 - PRP versus fenestration alone
 - Significant improvement at weeks 1 and 2
 - Approximately 80% had long term improvement: up to 1 year follow-up
 - No difference between treatment groups\(^1\)
 - Two injections: more sustained response\(^2\)

 \(^1\)Jacobson JA et al. J Ultrasound Med 2016; 35:2413

PRP and Tendon Injection

- **Gluteal Tendons: greater trochanter**
 - Randomized controlled: 80 patients
 - PRP versus steroid injection
 - Ultrasound-guided: 5 – 6 needle passes
 - Patients with > 4 months of symptoms had greater clinical improvement with PRP at 12 weeks

Step #1: tendon fenestration

- Fenestration
- Post-fenestration

PRP: proximal patellar tendon

- Pre-procedure
- PRP injection
PRP and Tendon Injection

- **Patellar tendon**
 - Randomized controlled: 23 patients
 - PRP + fenestration versus fenestration alone
 - PRP better at 12 weeks, no different at 26 weeks
 - PRP no better than saline

- **Achilles tendon**
 - Randomized controlled: 54 patients
 - PRP versus saline injection
 - No significant difference at 24 weeks
 - PRP + eccentric physical therapy compared with saline
 - No difference in outcomes: clinical or ultrasound findings

1. de Vos RJ et al. JAMA 2010; 303:145

- **Rotator cuff**
 - PRP not beneficial

- **Supraspinatus**
 - Interstitial tear
 - No difference between PRP and saline

- **Plantar fascia**
 - PRP versus corticosteroid (40 patients)
 - PRP more effective and durable

Monto et al. Foot Ankle Int 2014; 35:313

PRP and Muscle Injection

- **Proximal hamstring**
 - PRP versus rehabilitation only
 - Randomized controlled: 28 patients
 - PRP group: full recovery earlier
 - 27 days versus 42 days (average)

Adductor Tear: PRP

- Target: tendon tear
- Efficacy uncertain
PRP and Muscle Injection

- **Hamstring**
 - PRP versus rehabilitation alone
 - 10 National Football League players
 - Median time: return to play
 - PRP = 20 days vs. rehabilitation =17 days
 - No significant difference between groups

<table>
<thead>
<tr>
<th>PRP and Ligament Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulnar collateral ligament: elbow</td>
</tr>
<tr>
<td>- Partial tear on MRI</td>
</tr>
<tr>
<td>- 34 athletes: followed for 70 weeks</td>
</tr>
<tr>
<td>- 88% returned to play, average 12 weeks</td>
</tr>
<tr>
<td>- Joint space widening:</td>
</tr>
<tr>
<td>- Decreased from 28 to 20 mm</td>
</tr>
<tr>
<td>- Change in widening: 7 to 2.5 mm</td>
</tr>
</tbody>
</table>

PRP and Knee Osteoarthritis

- Several studies evaluating PRP and knee OA
- Most studies show superior results with *leukocyte-poor* PRP compared with saline or hyaluronic acid
- Mild OA responds better
- No anatomic information
- One study showed same results with 1 or 2 injections

Wang D. et al. JBJS Reviews 2017, 5:1

PRP and Cartilage

- Meta-analysis: 21 papers
- Increased chondrocyte and mesenchymal stem cell proliferation
- Proteoglycan and Type II collagen deposition
- Increase chondrocyte viability
- Migration of stem cells
- Hyaline vs. fibrocartilage?

Labrum: PRP

- Platelet-rich plasma injection
- Inject into labral tear (*yellow arrow*)
- Efficacy unknown

PRP and Meniscus

- 15 patients
- US-guided PRP injection
- Meniscal degeneration
- 67% had functional improvement
- Grade 2 degeneration improved to Grade 1

Ozyavc ON. et al. J Ortho Surg 2019; 28:1
PRP: issues

- Different PRP systems
 - Variable platelet concentrations
 - Leukocyte poor versus rich
- Studies:
 - Variable controls, often unblinded
 - Often not compared to other treatments
 - Variable follow-up time points
 - How many injections?
 - Acute versus chronic conditions?
 - Which tendon?

Take Home Points

- Fenestration / tenotomy:
 - Proven effective at many sites
- Other tendon treatments: same
- Platelet-rich plasma
 - Tendon: not proven better than other treatments
 - Osteoarthritis: promising
 - What about cost effectiveness?

Syllabus on line and other educational material: www.jacobsonmskus.com

Twitter handle: @jacobson