Interventional MSK Ultrasound: Tendon Treatments and PRP

Jon A. Jacobson, M.D.
Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Outline
• Tendon treatment overview
• Tendon fenestration / tenotomy
• Whole blood injection
• Prolotherapy
• Platelet-rich plasma

Tendon: injury
• Acute tensile overload
 – Usually underlying abnormal tendon
• Chronic overuse: repetitive excessive loading
 – Loss of normal tendon architecture
 – Change in tenocyte morphology
 – Altered collagen fibril distribution and neovascularity
 – Microtears
 – Resulting underuse may contribute

Galloway MT et al. JBJS 2013; 95:1620

Tendon: healing
• Inflammatory phase
 – First week after injury
 – Fibrin clot
 – Cell migration, neovascularity
• Proliferation phase
 – 1 to 4 weeks
 – Fibroblasts synthesize collagen and extracellular proteins
• Remodeling phase

Galloway MT et al. JBJS 2013; 95:1620

Tendinosis or Tendinopathy
• Terms used instead of tendinitis
• No acute inflammatory cells
 – Primarily mucoid degeneration
 – Chondroid metaplasia
• Ultrasound:
 – Hypoechoic tendon
 – Heterogeneous, ill-defined
 – Possible increased thickness

Disclosures:
• Consultant: Bioclinica
• Advisory Board: Philips
• Book Royalties: Elsevier
• Not relevant to this talk

Note: all images from the textbook
Fundamentals of Musculoskeletal Ultrasound are copyrighted by Elsevier Inc.
Tendinopathy

- Degenerative, microtears, no inflammation
- Hypoechoic enlarged
- Anechoic clefts / partial tears
- Hyperemia: correlates with pain
- Eccentric physical therapy should be considered prior to any percutaneous treatment considerations

Patellar Tendon: tendinosis

Percutaneous Tendon Treatments

- Corticosteroid
- Fenestration (dry needling, tenotomy)
- Hyperosmolar dextrose, prolotherapy
- Whole blood (autologous)
- Platelet-rich plasma
- Stem cells
- Other: deer antler velvet, amniotic membrane

Peritendon Steroid Injections

- Shoulder: minimal transient pain relief\(^1\)
- Elbow: common extensor tendon
 - Pain returns worse than before injection\(^2\)
- Gluteal:
 - 72% showed improvement at 1 month\(^3\)
- Hamstring:
 - 24% had symptom relief beyond 6 months\(^4\)

2Coombes BK et al. JAMA 2013; 309:461
3Labrosse JM et al. AJR 2010; 294:292
4Zissin MH et al. AJR 2010; 195:993

Outline

- Tendon treatment overview
- Tendon fenestration / tenotomy
- Whole blood injection
- Prolotherapy
- Platelet-rich plasma

Tendon Fenestration

- Also called “dry-needling” or tenotomy
- Needle repeatedly passed through areas of tendinosis
- Disrupts area of tendinosis
- Bleeding causes release of growth factors
- Stimulates tendon healing
Fenestration: technique

- No NSAIDS x 2 weeks prior
- Ultrasound guidance: in plane
 - Long axis to tendon
- 20 or 22 gauge needle
- 20 – 30 passes until area soft
- Minimal Lidocaine: over tendon

Fenestration: technique

- Cover entire tendon abnormality
- Contact bone if at tendon abnormality
- Pull needle out of tendon to redirect
- Also redirect medial to lateral
 - Pivoting at needle entrance
 - Cone-shaped area

Fenestration: technique

- Contraindications:
 - Not delineated in literature
 - Prior steroid injection < 3 months ago
 - Bleeding disorders
 - Infection
 - Tendon tear > 50% thickness?

Post-procedure:

- No ice
- Rest for 2 weeks
 - Daily activities okay
 - Gradual return to activities
- Follow-up:
 - Referring physician, physical therapy
- No NSAIDS: 2 weeks

Percutaneous Fenestration

- 20 or 22-gauge needle
- 20 to 30 needle passes
- Continued until area covered and tendon softens

Phases of Tissue Healing

Post-procedure:

- Patellar tendon:
 - Knee brace (locked) x 2 weeks
 - First week non-weight bearing with crutches
 - Nothing?
- Achilles tendon:
 - Walking boot x 2 weeks

Fenestration: tendons

- Common extensor tendon: elbow
- Patellar tendon
- Gluteal tendons: great trochanter
- Achilles
- Other

Tendon Fenestration

- 14 tendons
- VAS score improved: 4, 12 weeks
- Patellar (5), Achilles (4)
- 1 each: gluteus medius, iliotibial tract, rectus femoris, hamstring, common extensor tendon

Common Extensor Tendon (Elbow)

- 58 patients
- Outcome: average 28 months
 - Pain level and difficulties with related activities
 - 64% excellent, 16% good, 7% fair, 13% poor
 - No adverse effects
- Follow-up study: 57 patients
 - 93% excellent or good results
 - Corticosteroid injection not needed

Patellar Tendon

Long Axis
Patellar Tendon

• 45 tendons
• 76% improved at 4 weeks, 24% no change
• Improved outcome at 4 weeks if:
 – Less pain prior to procedure
 – Well-defined area of tendinosis at US
 – No correlation with other ultrasound findings (color, size, location, etc.)

Discussion: tendon fenestration

• Studies are relatively limited to date
• Most common site:
 – Common extensor tendon (elbow)
 – Other sites have been attempted
• All studies show improvement
• Procedure well-tolerated
 – Potential risk of tendon tear

Discussion: other treatments

• Fenestration is often combined with other treatments:
 – Platelet-rich plasma or whole blood injection
 – Hyperosmolar dextrose or prolotherapy
• Common extensor tendon (elbow):
 – There is no benefit of injecting steroids during tenotomy1
 – Risk of tendon rupture

Ultrasonic Tenotomy (Tenex)

- Ultrasound phacoemulsification
 - Debride and aspirate necrotic tendon
- Irrigation
- Safe and effective
- No comparison studies
 - Outcomes, cost-effectiveness

Williams RC et al. PM R 2018; 10:313

Outline

- Tendon treatment overview
- Tendon fenestration / tenotomy
- Whole blood injection
- Prolotherapy
- Platelet-rich plasma

Whole Blood Injection

- Autologous whole venous blood
- Injected into abnormal tendon during fenestration
- Release of growth factors that will promote healing
- Refractory tendinopathy may be helped
 - Additional studies are needed

Kampa RJ et al. Int J Clinical Practice 2010; 64:1813

Whole Blood Injection: Common Extensor Tendon

Biceps Brachii Tendon: whole blood injection

Outline

- Tendon treatment overview
- Tendon fenestration / tenotomy
- Whole blood injection
- Prolotherapy
- Platelet-rich plasma
Prolotherapy

- Injection of an irritant
- Hyperosmolar dextrose or morrhuate sodium
- Unknown mechanism
 - Irritant attracts inflammatory mediators
 - Stimulate release of growth factors
 - Vascular sclerosant

Distel et al. PMR 2011; 3:S78

Achilles: hyperosmolar dextrose

Courtesy of Mark Cresswell, Vancouver

Prolotherapy

- Achilles
 - 36 patients with chronic tendinosis
 - Hyperosmolar dextrose every 6 weeks
 - Significant reduction in pain
 - Decreased vascularity in 55%

Outline

- Tendon treatment overview
- Tendon fenestration / tenotomy
- Whole blood injection
- Prolotherapy
- Platelet-rich plasma

Platelet-Rich Plasma

- Autologous venous blood
- Centrifuged
- Concentrated platelet sample
- Platelets degranulate:
 - Alpha granules: contain 95% of growth factors
 - Secrete additional growth factors (7 days)
 - Bind to cell membrane receptors: healing

PRP: what’s in the mix

- Platelet count:
 - 500K ideal (in vitro)\(^1\)
 - Tenocyte proliferation, migrations, collagen type I production
 - Less effectiveness if higher, even cell death
- White blood cells:
 - Leukocyte poor or rich concentrations
 - Poor; less catabolic cytokines, more healing\(^2\)

\(^2\)McCarron TM et al. JBJS 2012; 94:e143
PRP: Arthrex
- One of many available systems
- Double syringe system
- Leukocyte poor
- No anticoagulant needed
- Venous draw: 15 ml
- Place directly in centrifuge: 5 min
- 2 - 5 ml PRP
- Platelet concentration: 200 – 500K

PRP: how to inject
- No NSAIDS: 10 days before procedure
 - Inhibits platelet aggregation and activation
 - Platelet life span = 10 days
- Sterile technique
- 20 or 22-gauge needle
- Tendinosis: fenestrate during injection
- Tendon tear: target tendon defect

PRP: safety
- Pain: up to several days
- Risks:
 - Infection: PRP has antibacterial effects
 - Tumor:
 - Insulin-like growth factor (IGF) linked to cancer
 - IGF is not elevated in PRP preparations

Common Extensor Tendon: PRP
- 22-gauge needle
- In plane with transducer and long axis to tendon
- Fenestrate prior to or during PRP injection
- Most common: one treatment

PRP and Tendon Injection
- Common extensor tendon: elbow
 - Randomized controlled: 230 patients
 - PRP + fenestration versus fenestration alone
 - No difference in outcomes at 12 weeks
 - Significant difference in pain scores at 24 weeks: PRP group had less pain

Common Extensor Tendon
- PRP vs fenestration: 230 subjects
 - 24 weeks: PRP higher success (84% vs 68%)
- PRP, fenestration, steroid (in tendon):
 - No significant difference
- PRP vs whole blood: no difference
Common Extensor Tendon

- PRP vs steroid (+fenestration)
 - PRP significantly better at 2 years
- Metanalysis: inconclusive
- PRP is superior to steroids
- PRP is equal to lidocaine
 - Martin GI, J Ortho Surg Res 2019; 23:14

PRP and Tendon Injection

- Gluteal Tendons: greater trochanter
 - Randomized controlled: 30 patients
 - PRP versus fenestration alone
 - Significant improvement at weeks 1 and 2
 - Approximately 80% had long term improvement: up to 1 year follow-up
 - No difference between treatment groups
 - Two injections: more sustained response

PRP and Tendon Injection

- Gluteal Tendons: greater trochanter
 - Randomized controlled: 80 patients
 - PRP versus steroid injection
 - Ultrasound-guided: 5 – 6 needle passes
 - Patients with > 4 months of symptoms had greater clinical improvement with PRP at 12 weeks

PRP and Tendon Injection

- Patellar tendon
 - Randomized controlled: 23 patients
 - PRP + fenestration versus fenestration alone
 - PRP better at 12 weeks, no different at 26 weeks
 - PRP no better than saline

PRP and Tendon Injection

- **Achilles tendon**
 - Randomized controlled: 54 patients
 - PRP versus saline injection
 - No significant difference at 24 weeks\(^1\) and 1 year\(^2\)
- **Metaanalysis**
 - PRP + eccentric physical therapy compared with saline
 - No difference in outcomes: clinical or ultrasound findings\(^3\)

\(^1\)de Vos RJ et al. JAMA 2010; 303:145
\(^3\)Zhang YJ. Clin Orthop Relat Res 2018; 38:1623

PRP and Tendon Injection

- **Rotator cuff**
 - PRP not beneficial\(^1\)
- **Supraspinatus**
 - Interstitial tear
 - No difference between PRP and saline\(^2\)

\(^1\)Hurley ET et al. Arthroscopy 2019; 35:1584

PRP and Knee Osteoarthritis

- Several studies evaluating PRP, knee OA
- PRP may be slightly better than hyaluronic acid
- Benefits may decrease after 1 year
- Mild OA responds better
- No anatomic information
- Leukocyte-poor preparation is best
- Cartilage did not increase in thickness

PRP: where are we today?

- Promotes healing, does not cause harm
- Need: randomized controlled trials
- Meta-analysis:
 - No conclusive evidence to support PRP use\(^3\)
 - Supports ultrasound-guided leukocyte-rich PRP for tendinopathy (still controversial)\(^4\)
 - Supports use for knee osteoarthritis\(^5\)
- Accuracy? What about cost effectiveness?

\(^3\)Sheth U. et al. JBJS 2012; 94:298
\(^4\)Fitzpatrick J. et al. AJSM 2017; 45:238
\(^5\)Wang D. et al. JBJS Reviews 2017; 5:1

Take Home Points

- Fenestration / tenotomy:
 - Proven effective at many sites
- Other tendon treatments: same
- Platelet-rich plasma
 - Tendon: not proven better than other treatments
 - Osteoarthritis: promising
 - What about cost effectiveness?

Syllabus on line and other educational material:
www.jacobsonmskus.com

Twitter handle: @jjacobson