AC-11® (Formerly known as C-MED-100®)

Claim Substantiation Document

Scientific data to support the Structure-Function Health Claims of AC-11®, a patented water soluble extract Of the bioactive Components of the plant species Known as Uncaria tomentosa.
Table of Contents

AC-11® Application

1. Title ... 3

2. Sponsored and prepared by 3

3. Application .. 4

4. Table 1 ... 6

5. References .. 9
AC-11® Application

1. Title of application.
Scientific data to support the Structure-Function health claims of AC-11®, patented water soluble extract of the bioactive components of the plant species known as Uncaria tomentosa.

2. Sponsored and prepared by:

 Daniel A. Zwiren
 President and CEO
 Optigenex Inc.
 333 River Street, Suite 912
 Hoboken, New Jersey 07030

 Tel: 201-653 5195
 Cell: 201-638-3810
 dzwiren@optigenex.com
3. Introduction.

AC-11® (formerly known as C-MED-100®) a water soluble extract of the bio-active component of the plant species known as *Uncaria tomentosa*, a traditional medicinal plant indigenous to the Brazilian and Peruvian Rainforests. AC-11® is registered in the United States under DSHEA as a dietary supplement and also is registered by the Cosmetic Toiletry and Fragrance Association (CTFA) under the INCI name C1-8 Alkyl Tetrahydroxycyclohexanoate as a cosmetic ingredient. AC-11® is standardized to a minimum 8 % CAE™, or Carboxy Alkyl Esters. CAE’s™ are the patented active ingredients in the composition. Moreover, research has confirmed that QAE™, or Quinic Acid Analogs, a sub-classification of CAE™, are one of the primary Carboxy Alkyl Esters found in AC-11®. Based on the data contained herein, the Structure/Function claims for health benefits are:

1. Enhances natural DNA repair (ref. 6,8,11,12,13,15,17,18,19,20)*
2. Supports healthy immune system function (ref. 1,2,4,10,17,18,19,20)*
3. Increases repair of sun-damaged skin (ref. 5,6,7,8,11)*
4. Acts as a natural anti-inflammatory (ref. 1,2,5)*
5. Improves anti-oxidant status (ref. 4,12,13,14,15,16,20)*
6. Increases collagen III expression in the skin (Anti-wrinkle) (ref. 6)*
7. Helps lighten skin and fades aging spots (ref.11)*

*See references (pg.8-11)

A summary of the science presented to support the aforementioned claims is presented in Table 1. There are twenty (20) applicable studies listed: three (3) are in vitro, six (6) are animal studies, and eleven (11) are human studies. Four (4) of the studies were in the form of confidential reports to Optigenex. The clinical end points evaluated were: increased DNA repair, enhanced immune response, antioxidation, anti-inflammation, collagen III production, and cell survival. The molecular mechanisms behind modulation of these clinical end points were documented by regulation of: (i) cancer cell toxicity; (ii) increased lymphocyte survival (increased half-life); (iii) enhanced DNA repair; (iv) Inhibition of NfKB; (v) reduced DNA damage; (vi) increases in WBC (white blood cells); (vii) increases in urinary tryptophan and nicotinamide levels; (viii) reduced risk
from lifestyle factors (neurogenic); (ix) reduced 8-OH DNA adducts; (x) reduced UV induced sunburn cells; (xi) reduced levels of UV induced T-T dimers; and (xii) enhanced collagen III synthesis. The data compiled involved the clinical assessments of greater than 160 animal and human specimens over a period in excess of nine years. Although considered in most of the studies herein, there were no reports to suggest AC-11®, CAE or quinic acid analogs (QAE) cause any acute or chronic toxicity. AC-11®’s research and data provide strong evidence for the structure-function claims or health benefits.

Optigenex, Inc. presents AC-11®: (1) oral with a daily dose of 350mgs/day, or in combination with other nutrients at 350mgs/day (2) topical with 0.6 – 1.5% concentration in formula. Support for these doses and concentrations is documented in Table 1 by the reference papers cited therein. It should be noted, there was a major difference in doses for topical administration of AC-11® at 5 mg/ml or 0.5% concentration (total dose = 500mg/kg), compared to oral administration for skin, which was calculated as 250 mg/day x 4 days, which equaled a total dose of 14.3 mg/kg AC-11® as the effective oral dose to the skin. Oral and topical dosing variations have been researched and documented by Klausner et.al. (American Association of Pharmaceutical Scientists Nov. 2002 (ref.7)).

The studies reported in this report varied greatly in duration of treatment. Accordingly, for direct comparison purposes the total dosages used were calculated as total dose = mg/kg x days dosed for each specimen included (See Table 1). In this manner, it is important to compare studies 7 through 11, in which treatments were with quinic acid analogs calculated to AC-11® equivalents. The result was a high content of AC-11® as quinic acid, ranging from total doses equal to 32,273-75,000 mg/kg (Table 1, studies 7-10). These AC-11® equivalent doses calculated as quinic acid were dramatically higher than the AC-11® doses as reported for the rest of the in vivo (rodent) studies, 3-8 and the human studies, 11-15 (Table 1, 100-12,000 mg/kg total doses). Yet the observed results were similar. The conclusion that can be drawn from a side by side analysis of the experiments shown in Table 1, studies 7 and 8 is that there are present additional bio
actives in AC-11® other than quinic acid analogs accounting for the increased efficacy observed in AC-11®. Nonetheless, quinic acid analogs (i.e., the QAE) have been identified as one of the primary efficacious ingredients of AC-11®.

The peer reviewed published data involving in vitro, animal and human studies establishes the efficacy of AC-11® containing a minimum 8% Carboxy Alkyl Esters, of which 4% (50% of the active ingredients CAE) are quinic acid analogs – one of the primary bioactive ingredients in AC-11®. In some studies supplemented with either quinic acid or quinic acid ammonium chelate, the total equivalent dose of AC-11® used* was calculated from the quinic acid analog dose used, with AC-11® having 4% QAE content, for direct comparison to the AC-11® supplement doses reported herein. In Table 1, studies 1, 2, 4-9 and 12-16 were supplemented with oral daily doses of AC-11® ranging from 200-700 mg/day (mean = 292 mg/day). Studies 7-10 were supplemented with quinic acid analogs and calculated to the equivalent dose as AC-11® having 4% QAE’s. Studies 17-20 were human skin organ culture studies.

Table 1: AC-11® Doses and Equivalent doses of QA

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Total Dose AC-11® used*</th>
<th>Clinical Endpoint</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3-5</td>
<td>100-400 ug/ml (= 100-400 mg/kg)</td>
<td>Cancer cell toxicity</td>
<td>Sheng et al 1998</td>
</tr>
<tr>
<td>2.</td>
<td>2-5</td>
<td>500-1000 ug/ml (= 500-1000 mg/kg)</td>
<td>Cancer cell toxicity, Incr. lymph. survival</td>
<td>Akesson et al 2003B, 2005</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>ORAC hydro* = 885 μmole TE/g ORAC hipo ^ = 11 μmole TE/g ORAC total = 896 μmole Scavenger capacity peroxyl radical</td>
<td>Conf. Report #1</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>2240 mg/kg</td>
<td>DNA repair stimulation,</td>
<td>Sheng et al 2000A</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4480 mg/kg</td>
<td>Immune stimulation</td>
<td></td>
</tr>
</tbody>
</table>

Pg 6
<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Dose (mg/kg)</th>
<th>Effect</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Rat</td>
<td>400 mg/kg</td>
<td>Reduced DNA damage induced by doxorubicin</td>
<td>Sheng et al 2000B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 mg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Mouse</td>
<td>12,000 mg/kg</td>
<td>Prolong lymphocyte survival</td>
<td>Akesson et al 2003A</td>
</tr>
<tr>
<td>7.</td>
<td>Mouse</td>
<td>Total UV x 77 days = 738 J/cm² + AC-11 0.5-1.5 % topical = 50-150 g/100 ml or ≥ 500 mg/kg</td>
<td>UV tumor progression reduced p< 0.02</td>
<td>Conf. report #2 2005b</td>
</tr>
<tr>
<td>8.</td>
<td>Mouse</td>
<td>75,000 mg/kg(^a)</td>
<td>Increase lymph half-life and inhibit NF-kB</td>
<td>Akesson et al 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,500 mg/kg(^c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Rat</td>
<td>720 mg/kg(^c)</td>
<td>Recovery of doxorubicin induced DNA damage</td>
<td>Sheng et al 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45,000 mg/kg(^a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45,000 mg/kg(^a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Human</td>
<td>1.3 x 10(^6) mg(^a) (=18,571 mg/kg)</td>
<td>Antioxidant and increased tryptophan and nicotinamide levels</td>
<td>Pero et al 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7 x 10(^6) mg(^a) (=38,571 mg/kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Human</td>
<td>2.25 x 10(^6) mg(^a) (=32,143 mg/kg)</td>
<td>Increased DNA repair and reduced risk from lifestyle</td>
<td>Pero, Lund 2009</td>
</tr>
<tr>
<td>12.</td>
<td>Human</td>
<td>14,700 mg(^c) (=210 mg/kg)</td>
<td>Increased levels of WBC</td>
<td>Sheng et al 2000A</td>
</tr>
<tr>
<td>13.</td>
<td>Human</td>
<td>42,700 mg(^c) (=601 mg/kg)</td>
<td>Increased levels of WBC, reduced decay antibodies</td>
<td>Lamm et al 2001</td>
</tr>
<tr>
<td>14.</td>
<td>Human</td>
<td>14,000 mg(^c) (=200 mg/kg)</td>
<td>Increased DNA repair and increase number of lymph</td>
<td>Sheng et al 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19,000 mg/kg(^e) (=271 mg/kg)</td>
<td>Increased DNA repair and increase number of lymph</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Human</td>
<td>5600 mg(^c) (= 80 mg/kg)(^d)</td>
<td>Reduced 8-OH DNA adducts and antioxidant</td>
<td>Pero et al 2005</td>
</tr>
<tr>
<td>16.</td>
<td>Human</td>
<td>7000 mg(^c) (= 100 mg/kg)(^e)</td>
<td>Reduced 8-OH DNA adducts and antioxidant</td>
<td>Pero et al 2002</td>
</tr>
<tr>
<td>17.</td>
<td>Human</td>
<td>500 mg/kg</td>
<td>Reduced sunburn cells</td>
<td>Mammone</td>
</tr>
</tbody>
</table>
| 18. Human | 100f | 500 mg/kg
($= 5 \text{ mg/ml in vitro}$)
in vitro topical
Enhanced UV repair but no effect on inducing dimers | Emanuel, Scheinfeld 2007 |
| 19. Human | 300f | 250 mg/day x 4 daysc
($= 10-25 \mu g/ml \text{ in vitro}$) oral skin dose equiv. (total dose = 14.3 mg/kg) | 14-42% reduction in repair of T-T dimers
Collagen III over expression | Conf. report #3 2008b |
| 20. Human | 100f | 500 mg/kg
($= 5 \text{ mg/ml in vitro}$)
in vitro topical
100f
1000 mg/kg
($= 10 \text{ mg/ml in vitro}$)
in vitro topical
100f
1500 mg/kg
($= 13 \text{ mg/ml in vitro}$)
in vitro topical
21% reduction T-T dimers
25% reduction T-T dimers | Conf. report #4 |

a calc. equivalent consumption as AC-11® having 4% QAEs as bioactive but treated with either quinic acid or Quinmax
b available from Optigenex upon request
c These human studies were supplemented with AC-11 ranging from 200-750 mg/day (mean = 292 mg/day) and then x days of dosing = total dose AC-11®, and in rodents total dose = 40-500mg/kg x days of dosing.
d in combination with 3 other nutrients
e in combination with 37 other nutrients
f number skin cells counted in organ cultures to determine sunburn /normal cells and T-T dimers

4. References

Phytomedicine 7(2): 137-143.
