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Interpretable fingerprint that links sub-structures’ relevance to the molecular properties is highly
desirable to guide decision making in drug discovery. For example, it is useful to understand which
functional groups of the drugs lead to specific property. To our best knowledge, existing fingerprinting
methods, as categorized below, all lack this level of explainability.

• Molecule-level fingerprints such as composition-transition-distribution (Govindan and Nair
(2011)) for the protein generate numerical values to measure the molecule-level features.
However, these fingerprints only provide molecule-level information.

• Hashing-based fingerprints such as Morgan fingerprint (Rogers and Hahn (2010)) and
Daylight-type fingerprint (James (2004)) for drugs hash circular or path sub-structures to
numerical values. However, it is difficult to trace back to the sub-structures due to the
hashing nature. For latent fingerprints such as mol2vec (Jaeger et al. (2018)), it is unclear
how the dense numerical values map back to sub-structures.

• Expert-curated fingerprints such as PubChem (Bolton et al. (2008)), MACCS (Cereto-
Massagué et al. (2015)) for drugs and amino acid composition (Cao et al. (2013)) for protein
represent each sub-structure with a bit of a bit vector. However, the output vector usually
assigns numerous granular sub-structures (~100 for PubChem) to even a small molecule,
where many sub-structures are a subset of other ones, making it intractable to know which
specific sub-structures lead to the outcome.

To fill the gap, we postulate that ideally, an interpretable fingerprint should be able to cleverly partition
the input to discrete pieces of moderate-sized sub-structures and provide a tractable path to trace the
partitioned sub-structural signals to the prediction outcome.

To tackle the above challenges, we propose an Explainable Substructure Partition Fingerprint (ESPF)
that decomposes drugs and proteins into a discrete set of moderate-sized sub-structures that are
customized to the data at hand and have strong predictive values. ESPF is inspired by the subword
units (Sennrich et al. (2015)) in the natural language processing domain and is based on the Byte Pair
Encoding algorithm (Gage (1994)). The input of ESPF is a database of sequences of entities (e.g.
SMILES for drug, the amino acid sequence for protein). Given this database, it discovers frequent
recurring subsequences (subword units) in a database and replaces the original sequence (word) with
the most plausible combination of subsequences. The output is the subsequences vocabulary set and
their frequencies. With these two pieces of information, it can decompose any new unseen sequence
to a sequence of frequent subsequences. This sequence can then be turned to a bit vector where each
bit corresponds to one item in the discovered subsequences set (See Algo. 1).

Empirically, we find ESPF outputs suitable sized sub-structure ordered partition. It successfully
identifies important functional groups for drugs and motifs for proteins. The suitable sized non-
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Algorithm 1: ESPF
Input: V as the set of all initial amino acids/SMILES tokens; W as the set of tokenized
proteins/drugs; θ as the specified frequency threshold; ` as the maximum size of V.

for t = 1 . . . ` do
(A, B), FREQ ← scan W
// (A, B) is the frequentest consecutive tokens.
if FREQ < θ then

break // (A, B) ’s frequency lower than threshold
W← find(A, B) ∈W, replace with (AB)
// update W with the combined token (AB)
V← V ∪ (AB) // add (AB) to the token vocabulary set V

Output: W, the updated tokenized proteins/drugs; V, the updated token vocabulary set.

overlapping outputs provide a tractable path to see which sub-structures contribute to machine
learning predictive outcomes. For example, it identifies contributing factors in the interaction between
Sildenafil and Isosorbide Mononitrate. In addition, it has competitive predictive performance against
state-of-the-art fingerprinting methods. e.g., a 2% increase in PR-AUC over ECFP on the drug-drug
interaction prediction task. The ESPF method can also be used for any other sequential biomedical
entities such as DNA sequences.
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