Contents

Prologue x
Naomi J. Halas and Peter Nordlander

Introduction xiii
Pedro H.C. Camargo and Emiliano Cortés

1 Theory of Plasmonic Excitations 1
Lucas V. Besteiro, Xiang-Tian Kong, Zhiming M. Wang and Alexander O. Govorov
1.1 Introduction 1
1.2 Dynamics of Plasmon Excitation and Decay 5
1.2.1 Collective Charge Dynamics 5
1.2.2 Confined Systems 8
1.2.3 Plasmonic Decay Channels 9
1.3 Hot Electrons: Energy Distribution and Mechanisms of Generation 11
1.4 Charge Transfer Mechanisms Associated with Plasmons 15
1.4.1 Indirect Hot Carrier Injection 16
1.4.2 Direct HE Injection 19
1.5 Plasmonic Near-Field Enhancement 19
1.6 Plasmonic Scattering 22
1.7 Photoheating 24
1.8 Example Applications 27
1.9 Outlook 30
Acknowledgements 30
References 30

2 Characterization and Properties of Plasmonic-Catalytic
Nanostructures from the Atomic Scale to the Reactor Scale 37
Briley B. Bourgeois, Dayne F. Swearer and Jennifer A. Dionne
2.1 Overview 37
2.2 Ensemble Studies and Mechanistic Mysteries 39
2.2.1 Monitoring an Ensemble Reaction 40
2.2.2 Ensemble Experiments 42
2.2.3 Room for Growth in Ensemble Characterization Procedures 45
2.3 Single/Subparticle Measurements – Toward Uncovering Mechanisms 47
2.3.1 Diffraction-Limited Optical Characterization Techniques 48
2.3.2 Dark-Field Spectroscopy/Microscopy 50
Contents

2.3.3 Super-Resolution Microscopy – Beating the Diffraction Limit 52
2.3.4 Electron Microscopy 54
2.3.5 A Note on Computational Tools 56
2.4 Ultrafast Spectroscopy and Emerging Techniques – A Promising Future 58
2.4.1 Ultrafast Spectroscopy and Surface-Enhanced Raman Scattering 58
2.4.2 Tip-Enhanced Raman Spectroscopy 60
2.4.3 X-Ray and Ultrafast Electron Microscopy 62
2.5 Outlook 63
Acknowledgments 64
References 64

3 Synthesis of Plasmonic Nanoparticles for Photo- and Electrocatalysis 71

Wei Xie, Kaiju Zhang, Roland Grzeschik and Sebastian Schlücker

3.1 Introduction 71
3.2 Monometallic Plasmonic Nanoparticles 72
3.2.1 Au Nanoparticles 72
3.2.1.1 Au Quasispheres 73
3.2.1.2 Au Nanorods 74
3.2.1.3 Au Nanocubes 74
3.2.1.4 Au Nanotriangles 75
3.2.1.5 Au Nanostars 77
3.2.2 Ag Nanoparticles 78
3.2.2.1 Ag Quasispheres 78
3.2.2.2 Ag Nanowires and Nanorods 79
3.2.2.3 Ag Nanocubes 80
3.2.2.4 Ag Nanoplates with Long Narrow Gaps 81
3.2.3 Cu Nanoparticles 82
3.2.3.1 Cu Quasispheres 82
3.2.3.2 Cu Nanorods 83
3.2.3.3 Cu Nanocubes 83
3.2.4 Al Nanoparticles 83
3.2.4.1 Al Nanosheets 83
3.2.4.2 Al Nanocrystals 83
3.2.4.3 Al Nanorods 84
3.3 From Monometallic NP Films to Composite NP Architectures 85
3.3.1 Nanoparticle Monolayers 86
3.3.2 Superstructures 87
3.3.3 Other Structures 89
3.4 SERS Studies of Photo- and Electrocatalysis 92
3.4.1 Photocatalysis 92
3.4.1.1 Oxidation of Aniline 92
3.4.1.2 Reduction of Nitroarenes 93
3.4.1.3 Dehalogenation 94
3.4.2 Electrocatalysis 96
3.4.2.1 Hydrogen Evolution Reaction 96
3.4.2.2 Oxygen Evolution Reaction 96
3.4.2.3 Oxygen Reduction Reaction 97
3.4.2.4 Electrocatalytic CO₂ Reduction 99
References 101
4 Plasmonic Catalysis Toward Hydrogenation Reactions 109
Gareth D. Price, Alexandra Gellé and Audrey Moores
4.1 Introduction 109
4.2 Hydrogenation of Alkenes and Alkynes 110
4.3 Hydrogenation of Aldehydes and Ketones 115
4.4 Reduction of Nitro Compounds 120
4.4.1 Hydrogenation of Nitro Groups 120
4.4.2 Reductive Coupling of Nitroaromatics Compounds 126
4.5 Outlook 129
References 130

5 Plasmonic Catalysis, Photoredox Chemistry, and Photosynthesis 137
Sungju Yu and Prashant K. Jain
5.1 Introduction 137
5.2 Energy Conversion Following Plasmonic Excitation 138
5.2.1 Plasmon-Induced Generation of Charge Carriers 138
5.2.2 Extraction of Charge Carriers Generated by Plasmonic Excitation 139
5.2.3 Mechanisms of Charge Transfer 139
5.2.4 Energetics and Kinetics of Carrier Harvesting 141
5.2.5 Chemical Potential of Plasmonic Excitations 144
5.3 Plasmon-Excitation-Assisted Charge Transfer Reactions 146
5.3.1 Photo-Driven Growth of Ag and Au NPs 146
5.3.2 Switching of Redox States 146
5.4 Plasmon-Excitation-Driven Processes Relevant for Fuel Generation 148
5.4.1 H₂O Splitting 148
5.4.2 CO₂ Reduction 149
5.4.3 CO₂ Reduction with a Reaction Promoter 153
5.4.4 Thermodynamic Insights into Plasmon-Excitation-Driven CO₂ Reduction 157
5.5 Outlook 159
Acknowledgments 162
References 162

6 Plasmonic Catalysis for N₂ Fixation 165
Tomoya Oshikiri and Hiroaki Misawa
6.1 Introduction 165
6.2 Reaction Mechanism and Evaluation of N₂ Fixation 166
6.2.1 Principles of Plasmon-Enhanced NH₃ Photosynthesis 166
6.2.2 Associative and Dissociative Pathways of N₂ Fixation 168
6.2.3 Analysis and Quantification of Plasmon-Induced NH₃ Evolution 168
6.3 N₂ Fixation Through NFE 170
6.4 N₂ Fixation Through DHEI into N₂ Molecules 170
6.5 HET from a Plasmonic Metal to a Semiconductor 174
6.5.1 N₂ Fixation Through HET with Sacrificial Electron Donors 174
6.5.2 N₂ Fixation Through HET Using Water as an Electron Donor 180
6.6 Outlook 186
References 187
Contents

7 Untangling Thermal and Nonthermal Effects in Plasmonic Photocatalysis 191

Xueqian Li, Jie Liu and Henry O. Everitt

7.1 Introduction 191
7.2 Tools and Techniques for Product Analysis and Temperature Measurement 193

7.2.1 Gas Phase Reaction Chamber 194
7.2.2 Temperature Measurement 195
7.2.3 Thermal Gradients 197
7.2.4 Thermocouple Diameter 198

7.2.5 Additional Thermometry Methods in Plasmonic Photocatalysis 199
7.3 Photothermal Catalysis 200

7.3.1 Ru-based Catalysts for NH$_3$ Synthesis 200
7.3.2 Thermal Gradients in Ru Catalysts 201

7.3.3 Intensity- and Wavelength-Dependent Behavior 204
7.3.4 Direct and Indirect Illumination 204

7.4 Discriminating Thermaland Nonthermal Effects 207

7.4.1 Rhodium Catalysts for CO$_2$ Hydrogenation 209
7.4.2 Plasmonic Photocatalytic Reduction of CO$_2$ 211

7.4.3 Unheated, Light-Only Photocatalysis 216
7.4.4 Light Intensity Dependence of Heated Photocatalysts 217
7.4.5 Nonthermal Photocatalytic Behaviors 217

7.5 Outlook 220
References 222

8 Earth-Abundant Plasmonic Catalysts 231

Hefeng Cheng, Yasutaka Kuwahara and Hiromi Yamashita

8.1 Introduction 231

8.2 MoO$_{3-x}$- and WO$_{3-x}$-Based Plasmonic Catalysts 236

8.3 Molybdenum and Tungsten Bronzes-Based Plasmonic Catalysts 241

8.4 Cu$_{2-x}$E (E = S, Se, Te)-Based Plasmonic Catalysts 249

8.5 Outlook 251
References 254

9 Plasmon-Enhanced Electro catalysis 261

Subin Yu, Nur Aqilii Riana Che Mohamad, Minju Kim, Yoonseo Nah, Filipe Marques Mota and Dong Ha Kim

9.1 Introduction 261

9.2 Principles and Mechanism 262

9.2.1 Introducing Plasmonic Nanostructures in Electrocatalytic Systems 262
9.2.2 Disentangling Mechanism Pathways 263

9.2.3 Defining Approaches 267

9.3 Plasmon-Enhanced Electro catalytic Systems 268

9.3.1 Water Splitting: Hydrogen and Oxygen Evolution 269

9.3.2 Fuel Cells: Oxygen Reduction and Alcohols Electro-oxidation 274

9.3.3 The Multielectron CO$_2$ Reduction to Valuable Products 283

9.4 Outlook 287
Acknowledgements 288
References 288
10 **Plasmonic Metal/Semiconductor Heterostructures** 295
 Wenxiao Guo, Jiawei Huang and Wei David Wei

10.1 Introduction 295

10.2 Working Principles 295

10.2.1 Formation of the Schottky Barrier at the Metal/Semiconductor Interface 296

10.2.2 Electron Transfer Across the Schottky Barrier 297

10.3 Fabrication of Metal/Semiconductor Heterostructures 299

10.3.1 Colloidal Deposition Method 299

10.3.2 Deposition-Precipitation Method 300

10.3.3 Photodeposition Method 301

10.4 Design of Metal/Semiconductor Heterostructures 302

10.4.1 Design of Semiconductor Materials 302

10.4.1.1 Optimization of the Schottky Barrier Height 302

10.4.1.2 Optimization of Charge Transport in Semiconductors 303

10.4.1.3 Catalytic Activity of Semiconductors 304

10.4.2 Design of Metal Nanoparticles 305

10.4.2.1 Morphology of Metal Nanoparticles 305

10.4.2.2 Materials of Metal Nanoparticles 305

10.4.3 Design of Metal/Semiconductor Interfaces 306

10.4.3.1 Optimization of the Interfacial Electron Transfer 307

10.4.3.2 Optimization of Interfacial Active Sites 308

10.5 Photocatalytic Reactions Mediated by Plasmonic Heterostructures 308

10.5.1 Water Splitting 308

10.5.2 Organic Transformation 311

10.5.3 Other Reactions 312

10.6 Outlook 312

Acknowledgments 313

References 313

Epilogue 323

Suljo Linic

Index 327