Overview

- Individuals with dementia (IWDs) higher rate of functional mobility problems and falls (McGough et al., 2013; Suttanon et al., 2012)
- Functional mobility deficits related to gait and motor impairments (McGough et al., 2013; Suttanon et al., 2012)
- Cognitive impairment increases risk of falls in older adults (Asada et al., 1996; Allan et al., 2009; Eriksson et al., 2008; Rubenstein 1994, 2006; Tinetti et al., 1988)

Reducing Disability in Alzheimer’s Disease

- Home-based exercise program combined with caregiver (CG) training in behavioral management
 - Exercise
 - Education
 - Symptoms, progression, and treatment of AD; community resources; home safety and environmental modifications; legal and financial issues
 - Emotional training
 - Realistic expectations; coping with caregiving and respite; managing negative thoughts; generalizing and maintaining skills
 - Instrumental education
 - ABC’s of behavior change; communication techniques in dementia; problem-solving strategies; pleasant events and depression
Reducing Disability in Alzheimer’s Disease

Physical health and function
- Walking time, balance, functional reach
- Short-form Health Survey (SF-36)
 - Physical functioning, physical role functioning
- Sickness Impact Profile
 - Body care and movement, mobility, home management
- Falls
- Number of minutes spent walking
- Number of restricted activity days

Affective status
- Cornell Scale for Depression in Dementia

Behavioral disturbance
- Revised Memory and Behavior Problem Checklist

Published Findings

- Intervention group improved on SF-36 and Cornell Depression Scale
- Increased exercise minutes per week compared to control group
- Restricted activity days were reduced by RDAD intervention
- No other significant differences found
 - No specific report of RDAD intervention on physical performance measures

Teri et al., 2003

Aim of the Current Study

Review performance on physical performance tests
- Falls
- Walking speed
- Balance
- Functional reach

Determine if individual components of RDAD differ in impact on results
Determine if diagnosis impacts effect of intervention
Sample Demographics

N=411
- 45% female
- 50% Alzheimer’s disease
 - 20% “other” dementia; 1% Parkinson’s disease; 1% stroke
- 62% married
- Short Blessed (range 0-28) : $\bar{X} = 19.1$ (8.16)
- Number of restricted days/week: $\bar{X} = 0.83$ (1.88)
- Number of minutes spent walking/week: $\bar{X} = 127.66$ (218.75)

Paired t-tests

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>t</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falls (dichotomous)</td>
<td>.065</td>
<td>3.05</td>
<td>.002</td>
</tr>
<tr>
<td>Falls (continuous)</td>
<td>-.087</td>
<td>-0.34</td>
<td>.73</td>
</tr>
<tr>
<td>Walking Speed</td>
<td>.068</td>
<td>0.60</td>
<td>.55</td>
</tr>
<tr>
<td>Balance</td>
<td>-.071</td>
<td>-0.53</td>
<td>.59</td>
</tr>
<tr>
<td>Functional Reach</td>
<td>.012</td>
<td>0.23</td>
<td>.82</td>
</tr>
</tbody>
</table>

Logistic Regression - falls

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E.</th>
<th>Wald Chi-Square</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 falls</td>
<td>-2.96</td>
<td>.29</td>
<td>102.45</td>
<td>.001</td>
<td>.05</td>
</tr>
<tr>
<td>Exercise</td>
<td>-.03</td>
<td>.06</td>
<td>.23</td>
<td>.63</td>
<td>.97</td>
</tr>
<tr>
<td>Education</td>
<td>-.01</td>
<td>.07</td>
<td>.01</td>
<td>.94</td>
<td>.99</td>
</tr>
<tr>
<td>Instrumental</td>
<td>-.01</td>
<td>.07</td>
<td>.03</td>
<td>.86</td>
<td>.99</td>
</tr>
<tr>
<td>Emotional</td>
<td>.01</td>
<td>.06</td>
<td>.04</td>
<td>.85</td>
<td>.01</td>
</tr>
<tr>
<td>Short Blessed</td>
<td>.03</td>
<td>.02</td>
<td>2.75</td>
<td>.10</td>
<td>.03</td>
</tr>
<tr>
<td>Physical Function</td>
<td>.06</td>
<td>.03</td>
<td>4.98</td>
<td>.03</td>
<td>.06</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>-.07</td>
<td>.29</td>
<td>.06</td>
<td>.81</td>
<td>.93</td>
</tr>
<tr>
<td>Constant</td>
<td>-.85</td>
<td>.80</td>
<td>1.12</td>
<td>.29</td>
<td>.43</td>
</tr>
</tbody>
</table>

Regression analysis
- Each intervention component
- Cognition, physical function, diagnosis
Alzheimer’s disease sample

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E.</th>
<th>Wald Chi-square</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 falls</td>
<td>-3.03</td>
<td>.40</td>
<td>57.13</td>
<td>.001</td>
<td>.05</td>
</tr>
<tr>
<td>Exercise</td>
<td>-.08</td>
<td>.09</td>
<td>.96</td>
<td>.33</td>
<td>.92</td>
</tr>
<tr>
<td>Education</td>
<td>-.19</td>
<td>.10</td>
<td>3.60</td>
<td>.06</td>
<td>.83</td>
</tr>
<tr>
<td>Instrumental</td>
<td>-.08</td>
<td>.10</td>
<td>.63</td>
<td>.43</td>
<td>.92</td>
</tr>
<tr>
<td>Emotional</td>
<td>.15</td>
<td>.09</td>
<td>2.92</td>
<td>.09</td>
<td>1.16</td>
</tr>
<tr>
<td>Short Blessed</td>
<td>.01</td>
<td>.03</td>
<td>.04</td>
<td>.84</td>
<td>1.01</td>
</tr>
<tr>
<td>Physical Function</td>
<td>.07</td>
<td>.03</td>
<td>4.17</td>
<td>.04</td>
<td>1.07</td>
</tr>
<tr>
<td>Constant</td>
<td>.32</td>
<td>1.03</td>
<td>.09</td>
<td>.76</td>
<td>1.37</td>
</tr>
</tbody>
</table>

indicating more education sessions leads to less risk of fall

Non-AD sample

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E.</th>
<th>Wald Chi-square</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 falls</td>
<td>-3.81</td>
<td>.60</td>
<td>40.60</td>
<td>.001</td>
<td>.02</td>
</tr>
<tr>
<td>Exercise</td>
<td>-.01</td>
<td>.10</td>
<td>.01</td>
<td>.91</td>
<td>.99</td>
</tr>
<tr>
<td>Education</td>
<td>.35</td>
<td>.15</td>
<td>5.83</td>
<td>.02</td>
<td>1.42</td>
</tr>
<tr>
<td>Instrumental</td>
<td>.07</td>
<td>.12</td>
<td>.31</td>
<td>.58</td>
<td>1.07</td>
</tr>
<tr>
<td>Emotional</td>
<td>-.15</td>
<td>.12</td>
<td>1.40</td>
<td>.24</td>
<td>.86</td>
</tr>
<tr>
<td>Short Blessed</td>
<td>.06</td>
<td>.03</td>
<td>4.37</td>
<td>.04</td>
<td>1.06</td>
</tr>
<tr>
<td>Physical Function</td>
<td>.07</td>
<td>.05</td>
<td>2.34</td>
<td>.13</td>
<td>1.08</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.90</td>
<td>1.45</td>
<td>4.03</td>
<td>.05</td>
<td>.06</td>
</tr>
</tbody>
</table>

indicating less education sessions leads to less risk of fall or more education sessions leads to higher risk of falls

Summary of Findings

- Falls reduced significantly from 31% to 18% with RDAD intervention
- No change in gait speed, balance, or functional reach
- Interaction between diagnosis (AD vs. non-AD) and education component of intervention
 - AD group: negative relationship
 - more education led to reduced risk
 - Non-AD group: positive relationship
- Exercise component of RDAD did not contribute to change in falls

Discussion

- RDAD may be beneficial as falls intervention for IWDs
- Possible that exercise component not intense enough to elicit changes in physical performance measures
- RDAD intervention may have differential benefits dependent on type of dementia
- Remains unclear why more education could lead to higher risk of falls in non-AD sample
Future Research

- Utilize control group to allow definite conclusions regarding RDAD as falls intervention
- Increase intensity of exercise program to facilitate adaptive response in biological tissue
- Further explore potential for differential effects of RDAD intervention in non-AD sample

Acknowledgments

- This presentation is made possible by grants from the Administration on Aging (90AE0329 and 90AE0340) to the Ohio Department of Aging.

References

